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ABSTRACT

The spatiotemporal evolution of warm convective cloud fields over central Europe is investigated on the basis of 30

cases using observations from the SpinningEnhancedVisible and Infrared Imager (SEVIRI) on board the geostationary

Meteosat platforms. Cloud fields are tracked in successive satellite images using cloudmotion vectors. The time-lagged

autocorrelation is calculated for spectral reflectance and cloud property fields using boxes of 163 16 pixels

and adopting both Lagrangian and Eulerian perspectives. The 0.6-mm reflectance, cloud optical depth, and

water path show a similar characteristic Lagrangian decorrelation time of about 30min. In contrast, signifi-

cantly lower decorrelation times are observed for the cloud effective radius and droplet density. It is shown

that the Eulerian decorrelation time can be decomposed into an advective component and a convective

component using the spatial autocorrelation function. In an Eulerian frame cloud fields generally decorrelate

faster than in a Lagrangian one. The Eulerian decorrelation time contains contributions from the spatial

decorrelation of the cloud field advected by the horizontal wind. A typical spatial decorrelation length of 7 km

is observed, which suggests that sampling of SEVIRI observations is better in the temporal domain than in the

spatial domain when investigating small-scale convective clouds. An along-track time series of box-averaged

cloud liquid water path is derived and compared with the time series that would be measured at a fixed

location. Supported by previous results, it is argued that this makes it possible to discriminate between local

changes such as condensation and evaporation on the one hand and advective changes on the other hand.

1. Introduction

Warm convective clouds are highly variable in space

and time and cover large areas of Earth (Turner et al.

2007). Through the transport of energy and moisture,

they couple the boundary layer and the free troposphere.

Their bright cloud tops reflect the incoming sunlight,

which strongly modulates the atmospheric radiation bud-

get (Trenberth et al. 2009). Because of our lack of un-

derstanding of relevant processes and feedbacks, low-level

clouds remain a dominant source of uncertainty in cli-

mate projections (Clement et al. 2009).

The central motivation of this study is to find suitable

techniques and quantities that allow a spatiotemporal

characterization of convective cloud fields and their life

cycle from space, and can subsequently serve, for ex-

ample, as metrics for evaluating parameterizations of

cumulus convection in climate models (Dorrestijn et al.

2013). This characterization provides complementary

information about the spatial structure and temporal

changes of cloud properties to serve as a fingerprint of

underlying dynamical and microphysical processes. In

addition, information on the spatial structure of cloud

fields as given by the power spectrum are essential to

realistically represent cloud radiative effects in models

and observations (Davis et al. 1996).

In an early global study based on satellite observa-

tions, the frequency of fractional cloudiness on scales

smaller than 50–200km2 was found to be 20%–30%

(Rossow and Garder 1993). Albrecht (1989) already

pointed out the high uncertainties of the global albedo

in climate models due to the crude representation of
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cumulus cloud coverage, which still affect currentmodels.

It has been suggested that intercomparisons of observa-

tions, large-eddy simulations (LES), and single-column

models (SCM) are essential for improving such parame-

terizations (Lenderink et al. 2004). Brown et al. (2002)

designed a LES model of shallow cumulus convection

over land as basis for testing cloud parameterizations in

numerical weather prediction and climatemodels. High-

resolution models, however, also have problems in

representing clouds realistically, as can be determined

by comparisons with observations. In recent years the

spatiotemporal resolution of models has been steadily

increased to better resolve relevant small-scale cloud

processes. One promising source of observations for the

evaluation of high-resolution models is meteorological

satellites because of their global coverage. In contrast to

polar-orbiting satellites, geostationary satellites like

Meteosat have the capability to observe and track cu-

mulus clouds from their early developing stage onward

and are the focus of the present study.

Separating cloudy from cloud-free areas is an essential

first step in the retrieval of cloud physical properties from

satellite. Roebeling et al. (2006) developed an algorithm

to retrieve the cloud optical thickness (t), the cloud

droplet effective radius (re), and the liquid water path

(LWP) from solar channels during daytime. However, the

investigation of warm convective cloud fields based on

these retrieved properties is challenging because of low

LWP values and small clouds sizes. Fractional cloudiness

induces small-scale optical property variations and thus

high uncertainties (Han et al. 1994). This can be explained

by small clouds and cloud-free areas that are smaller than

the actual satellite resolution (Koren et al. 2008). In par-

ticular the retrieval of re is very sensitive to the spatial

satellite resolution. Wolters et al. (2010) identified that re
is highly overestimated at lower satellite resolutions be-

cause of variability and the nonlinear relation between the

absorbing reflectances and re. These uncertainties also

propagate to estimates of the LWP, which is generally

assumed to be proportional to the product of t and re
(Horvath et al. 2014).

These cloud property uncertainties demonstrate that

validation of cloud property retrievals with ground-

based or other satellite measurements is required

(Roebeling et al. 2008). However, comparing convective

cloud properties obtained from satellite with instanta-

neous ground-based measurements is challenging be-

cause of their rapid changes in space and time (Feijt and

Jonker 2000; Deneke et al. 2009). Despite these un-

certainties, Meteosat observations are the best available

option to characterize the spatiotemporal evolution of

cloud fields over Europe, and thus offer unique refer-

ence data for model evaluation. Up to now, however,

this potential has not been fully exploited, also because

of the lack of established techniques and quantities for

such an evaluation.

In prior studies, Cahalan et al. (1982) performed

a spatiotemporal statistical analysis of day-to-day

changes in cloudiness using data from the scanning

radiometer aboard the polar-orbiting National Oce-

anic and Atmospheric Administration satellites. They

calculated characteristic time and length scales from

decorrelation functions of time- and space-lagged in-

frared (IR) images and showed that Lagrangian cor-

relation times are always larger than the Eulerian.

They, however, focused on relatively large spatial and

temporal scales on the order of several hundred kilo-

meters and several days, respectively. For the charac-

terization of statistical cloud properties on a kilometer

scale, Slobodda et al. (2015) investigated decorrelation

lengths for different measurements in the solar and IR

part of the spectrum over Europe and using Meteosat

observations. They stated that visible and near-IR ob-

servations, which are basis for cloud property re-

trievals, decorrelate much faster than IR fields, which

are related to cloud-top temperature and obtain their

signals from higher atmospheric layers. Feijt and

Jonker (2000) showed that temporal scales of vari-

ability in LWP derived from ground-based microwave

measurements can be matched to spatial scales in

satellite-retrieved fields of LWP.

A spatiotemporal characterization of convective

cloud fields does potentially have, however, a wide

applicability, ranging from forecasts of solar irradiance

in the context of solar power generation (Hammer et al.

1999) to the detection of convective initiation (Senf

et al. 2015). Toward this, the Eulerian perspective and

the Lagrangian perspective will be contrasted. While

the former is typical for ground-based measurements,

we argue that the latter is better suited for a process-

based characterization of clouds, as it allows a separa-

tion of advective and convective changes. Taking these

findings into account has high implications for obser-

vation networks. We also aim for the identification of

quantities that are suitable for model comparison. We

therefore consider not only Meteosat reflectances but

also optical and microphysical cloud properties and

high-resolution wind data. Here, the temporal changes

of satellite-derived LWP fields receive particular at-

tention in our correlation analysis because LWP is

readily available from models, and changes can be at-

tributed to physical processes affecting condensation

and evaporation of cloud droplets. Please note that

precipitation and glaciation processes also influence

the evolution of LWP fields; however, they are not

considered in our study.
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Section 2 provides an overview of the data, and sec-

tion 3 describes our main methodology for the study. In

section 4, we present the results and discuss how they

relate to similar past studies. Section 5 summarizes

conclusions and gives suggestions for future studies.

2. Data

Data from the Spinning Enhanced Visible and In-

frared Imager (SEVIRI) are used in this analysis. This

optical imaging radiometer is themain payload on board

the geostationary Meteosat Second Generation (MSG)

satellites, which are operated by EUMETSAT. In ad-

dition to 11 narrowband channels (solar and IR) with a

nadir spatial resolution of 3 3 3 km2, one broadband

high-resolution visible (HRV) channel (1 3 1km2 in

nadir) is applied. A detailed technical description of

MSG is given by Schmetz et al. (2002).

For this paper, 30 cases from the years 2012 and 2013

have been selected from Meteosat’s rapid-scan service

(RSS) covering Europe with a 5-min repeat cycle

from a satellite position at 9.58E above the equator.

The cases show low-level broken cumulus clouds in

different meteorological environments. Detailed in-

formation about the meteorological conditions can be

found in section 4a. Meteosat-8 provided this service

until 9 April 2013, when it was replaced by Meteosat-9.

Our domain of interest covers Germany and parts of

eastern, western, and central Europe (Fig. 1). The

white rectangles indicate the starting box of each track,

which is labeled with a track number. Because of the

viewing geometry of Meteosat, the box area varies

from approximately 50 3 110 km2 in the north to 50 3
90 km2 in the south of the domain. The orange barbs

represent the calculated cloud motion velocity (CMV)

and direction. In the center of our domain, one pixel

has a sampling size of about 6 km (northward) by

3.6 km (eastward) and 2 km (northward) by 1.2 km

(eastward) for the narrowband channels and the HRV

channel, respectively.

For the analysis, the EUMETSAT Satellite Appli-

cation Facility on Support to Nowcasting and Very

Short Range Forecasting (NWC SAF) software

package (Derrien and Le Gléau 2005) was used

together with the KNMI cloud physical properties

(CPP) retrieval (Roebeling et al. 2006), which has been

developed in a framework of the Satellite Application

Facility on Climate Monitoring (CM-SAF; Schulz et al.

2009). With the NWC SAF software, the cloud mask

(CMa), cloud type (CT), cloud-top height (CTH), and

high-resolution wind (HRW) products have been de-

rived. The quantities t, re, and LWP have been retrieved

for cloudy pixels with CPP; t and re retrievals use sim-

ulated lookup tables for cloudy 0.6- and 1.6-mm re-

flectances and are described in more detail in Roebeling

et al. (2006). All these cloud properties except the HRW

product (1 3 1 km2) have the MSG standard resolu-

tion of 3 3 3 km2. The estimation of cloud properties

within CPP assumes a vertically homogeneous cloud.

However, observations of shallow cumulus clouds indicate

FIG. 1. Overviewmap of the selected cases. The underlyingRGB image (Lensky andRosenfeld 2008) is a composite of the 0.6-, 0.8-, and

1.6-mm channels and the HRV channel from MSG SEVIRI showing the cloud scene of case 20 at 1200 UTC 17 May 2012. The white

rectangles indicate the track starting area along with the number of the trajectory. The orange barbs illustrate the cloudmotion vectors for

the respective case. Note that the cloud scenery is different for each of the cases except case 20.
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a linear increasing liquid water content (LWC) with

height within the cloud (Nicholls and Leighton 1986).

Since the focus of this study is the characterization of

warm convective clouds, the relation

LWP5
5

9
r
w
t3 r

e
(1)

is used to estimate the LWP, assuming adiabatic clouds

where rw is the density of liquid water [see Wood and

Hartmann (2006) for further discussion]. As a fourth

cloud-field variable, the cloud droplet number concen-

tration can be expressed as

N
d
5at0:5 3 r22:5

e , (2)

assuming adiabatic clouds with a monotonic increasing

LWCand re (Quaas et al. 2006). The constant a5 1.373
1025m20.5 as given by Brenguier et al. (2000) is used in

our study.

The selected cases show a high degree of spatial

cloud variability. Cloudy pixels might indeed contain

partially cloud-free regions in the subpixel range that

are smaller than SEVIRI’s narrowband spatial resolu-

tion (Roebeling et al. 2006). Consequently, SEVIRI’s

narrowband observations as well as retrieved cloud

products might be strongly affected by this subpixel

variability (Deneke et al. 2009; Wolters et al. 2010).

Because of the coarse spatial resolution of MSG, t is

usually underestimated while re is generally over-

estimated. This effect depends on viewing geometry

(e.g., Horvath et al. 2014) and becomes even more

pronounced for broken cumulus clouds (Wolters et al.

2010; Marshak et al. 2006). The resulting cloud prop-

erty uncertainties and biases are not further in-

vestigated or corrected for this study. Instead, we focus

on the characterization of the cloud-field structure as

well as the spatiotemporal evolution of cloud proper-

ties. Both processes reduce the autocorrelation be-

tween space and time-lagged cloud fields.

Shallow cumulus clouds cannot be detected from

Meteosat in their early initiation phase because of

the limited sensor resolution. Even cumulus medi-

ocris or congestus are oftentimes smaller than the

area probed by a standard-resolution Meteosat pixel

(’20 km2). For that reason, we additionally make use

of the HRV channel, which covers a pixel area of

1.9–2.4 km2 in our domain. Furthermore, a high-

resolution visible cloud mask (HRV-CMa) is calcu-

lated to separate between cloudy and cloud-free regions

and to improve the case selection (Bley and Deneke

2013). We eliminate all cases where the CT products

detect ice clouds and assume nonprecipitating cloud

fields, because rain formation mainly involves ice-related

processes in our domain.

3. Method

a. Cloud-field tracking

Because of the relatively coarse spatial resolution of

MSG, we are not able to derive characteristics repre-

sentative of single cumulus clouds. Instead, we determine

the statistics of a spatially extended convective cloud field

within a selected box. To get a sufficient number of pixels

representative of a cloud field, we analyze boxes con-

taining convective clouds within an area of 16 3 16 low-

resolution or 483 48 HRV pixels [;(603 96)km2]. The

cloud fields are tracked temporally through successive

satellite images from MSG. This is done in a two-step

procedure.

Initially, the NWC SAF HRW product is calculated

and used as a first guess of the horizontal wind (García-
Pereda 2013). This product is based on a cross-correlation

method and contains atmospheric motion vectors

(AMVs) for pixels that are characterized by particular

tracers (e.g., cloud edges) that can be matched in sub-

sequent satellite images. We have adapted the default

configuration files of the algorithm to get more motion

vectors representative for the motion of low-level broken

clouds, which are normally rejected by the stringent

quality tests of operational AMV products (Bedka and

Mecikalski 2005). Details can be found in appendix A,

including the configuration file that is contained in the

online supplemental material. To also consider slow

cloud motions, the shortest possible time interval of

10min is chosen. The most important input to the HRW

product for our applications is the HRV channel, as the

low-resolution channels are not able to properly resolve

the cloud edges of small convective clouds. The output of

the HRW product contains all AMVs that are found in a

specific height level. We average all AMVs within our

area of interest for each height level. This mean AMV

yields the direction and shift within a 10-min time interval

that is applied to the central pixel of the box. To identify

the height level that represents the cloud-field motion

best, the autocorrelation between the actual and shifted

box is calculated for each level (see section 3b). The

AMV that yields to the highest autocorrelation is then

chosen for the tracking. The optimalAMV is divided by a

factor of 2 to obtain the displacement of the cloud field at

full 5-min resolution. The motion vectors are then as-

sembled for different time steps to obtain a trajectory

offering a Lagrangian perspective of the evolving cloud

field (Fig. 2). As a final quality check, we tested whether

the decorrelation time for the fieldwithin anEulerian box
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is higher than that along the Lagrangian trajectory. This

happens if the mean cloud motion is so small that it

cannot be accurately quantified by AMVs, which are

limited to integer pixel resolution. In this case, a neigh-

boring box yielding a higher autocorrelation for a time lag

of 30min is sought. If such a box is found, it is used to

redefine the trajectory.

b. Autocorrelation for successive cloud fields

The autocorrelation function r that describes the

similarity of successive cloud fields is used in this study

to quantify the temporal persistence of cloud structures

and is used as basis of our spatiotemporal analysis of

clouds fields. To avoid edge effects on the box sides, the

cloud fields are multiplied by a normalized Hamming

window filter function.

The autocorrelation function is calculated in three

different ways. First, it is calculated as time-lagged au-

tocorrelation function for a fixed box (Euler), then along

the cloud motion trajectory (Lagrange), and also for a

fixed time but for different discrete displacement vectors

in x and y directions to obtain the spatial autocorrela-

tion. Figure 3 illustrates schematically how the box shifts

are applied. The scheme is plotted in two dimensions

collapsing the two spatial dimensions into one for easier

visualization. However, the spatial box shift is not only

performed in the x direction but also in the y direction.

Each Lagrangian trajectory consists of N 5 24 motion

vectors that connect the 25 box centers to form a 2-h track

with a time resolution ofDt5 5min. For a time lag of kDt,
the average autocorrelation is defined as

R
k
5

1

N2 k
�
N2k

n51

r(n, n1k) (3)

for successively determined autocorrelation functions

r(n, n1 k) correlating the cloud field at time nDt with the

field at (n 1 k)Dt. The average autocorrelation function

Rk represents a robust measure of the temporal persis-

tence of a cloud field and reduces statistical variations.

For the calculation of Eulerian and Lagrangian decorre-

lation times, time lags up to k 5 12, that is, up to 60min,

are considered. For the determination of decorrelation

lengths, a maximum pixel shift in row- or columnwise

direction of k 5 10 is applied.

c. Decorrelation time and length

The autocorrelation as function of time lag or pixel

shift typically has been found to follow an exponential

decay with sufficient accuracy for our purposes.

FIG. 2. Illustration of a 48 3 48 box that moves along its trajectory. The white arrow indicates the direction and

distance for the next center of the box, starting from the center of the previous box.

FIG. 3. Schematic diagram illustrating the way by which the

Lagrangian, Eulerian, and spatial autocorrelations are applied

with respect to time and space dimensions. The arrows indicate

the box shift for the different approaches with constant location

but varying time (blue), constant time but different spatial shifts

(green), and varying time and location (red) related to the cloud-

field tracks.

OCTOBER 2016 B LEY ET AL . 2185



Therefore, the average Eulerian autocorrelation Rk,E,

the average Lagrangian autocorrelation Rk,L, and the

average spatial cross-correlation Rk,S are approximated

by

R
k,E

5 e2(kDt)/tD,E , (4)

R
k,L

5 e2(kDt)/tD,L , and (5)

R
k,s

5 e2(kDx)/lD,x , (6)

whereDt andDx represent the time step of 5min and spatial

distance of a pixel shift, respectively. The quantities tD,E,

tD,L, and lD, x stand for the characteristic time and space

scales at which the convective cloud field has substantially

changed its structure from its initial pattern. A similar def-

inition of characteristic scales was applied by Cahalan et al.

(1982). Practically, the Eulerian (tD,E), and Lagrangian

(tD,L) decorrelation times as well as the decorrelation

lengths (lD) are calculated as the intersection between the

e21 line and the linear fit between Rk . e21 and Rk , e21.

The simplest statistical model yielding the described

decorrelation behavior is an autoregressive process of first

order (Von Storch and Zwiers 2002), which describes a

noise-driven system with some persistence. More com-

plex statistical models, like an autoregressive process of

second order, will exhibit a different decorrelation func-

tion and might ultimately better describe the observa-

tions. This has, however, not been pursued in our study

and is left for future research.

4. Results and discussion

In this section, we quantify the statistical parameters

for all analyzed cases including their uncertainties.

Relevant satellite attributes that influence the spatio-

temporal characteristics of warm convective cloud fields

are discussed. In section 4d, we present two case studies

and their associated LWP time series including a sepa-

ration between advectively and convectively induced

changes of their field-averaged LWP.

a. Meteorological conditions

In total, 30 cases were selected in the period from

April to August from the years 2012 and 2013. The

spring and summer period is chosen because of favor-

able meteorological conditions for warm convective

clouds over central Europe. The cases are characterized

by different environmental conditions with respect to the

cloud motion velocity and direction, synoptic situation,

and cloud extent. (An overview of all tracked convective

cloud fields, including the exact time and the meteoro-

logical conditions, is given in Table B1 in appendix B.)

Additionally the calculated characteristic spatiotemporal

scales are included. All cloud fields are analyzed for 2h

covering the early afternoon, which is usually the time of

day with the highest convection potential.

Four example cloud fields are shown in Fig. 4.

Figures 4a and 4b show convective clouds forming in

postfrontal cloud air conditions connected with rela-

tively highwind speeds over northernGermany (Fig. 4a)

and Poland (Fig. 4b). Both examples indicate homoge-

neous cloud patterns lateral to the wind direction. In

contrast, Figs. 4c and 4d demonstrate example scenes

with slow wind speeds with no constant wind directions.

In central Europe, warm convective cloud fields

typically develop after the passage of cold fronts con-

nected with low pressure systems when cold and humid

air is advected from the Atlantic Ocean and North Sea

(cases 2–8, 10, 15–22, 30). Because of large-scale hori-

zontal advection of humid air, these cloud fields are

sometimes stable over long distances (;100 km).

Warm convective cloud fields with very low average

cloud motions (CMV , 5m s21) mainly occur in warm

sectors or prefrontal conditions with low horizontal

gradients (cases 9, 25–29). This leads to the initiation of

convective clouds that can grow into deep convective

systems (Senf et al. 2015). The other cases (1, 11–14, 23,

24) are associated with low pressure systems over south-

ern and eastern Europe.

The spatial distribution of LWP, t, re, and Nd for one

selected case over Poland on 19May 2013 is visualized in

Fig. 5. The convective cloud field formed around

noontime in southeasterly warm air advection due to a

low pressure system over Italy. Moderate-speed CMVs

were observed with 5.5m s21 in the x direction and

6ms21 in the y direction. The LWP field exhibited a

spatial decorrelation length of 8 km in the north–south

direction and 6.5 km in the east–west direction. All

cloud properties are estimated at SEVIRI’s standard

resolution with a typical pixel area of 21 km2. To illus-

trate the large subpixel variability in these cloud

scenes, a semitransparent overlay of a high-resolution

red-green-blue (RGB) image is used in Fig. 5. In gen-

eral, cloudy pixels that are considered by the CPP re-

trieval might contain cloudy and cloud-free areas.

Consequentially t and LWP are usually underestimated,

while re is overestimated (Coakley et al. 2005; Jonkheid

et al. 2012). However, the LWP uncertainty is likely still

smaller for these broken liquid water cloud fields than

that for mixed-phase clouds (Jonkheid et al. 2012). As

mentioned before, we do not elaborate on these un-

certainties, which have been extensively studied in the

scientific literature (e.g., Zinner and Mayer 2006). In-

stead, we focus here on the question whether they are

well suited to characterize the temporal evolution of
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cloud fields and allow amore physically based description

than that offered by radiances.

b. Comparison of radiances and cloud properties with
respect to their correlation behavior

In this section, we present the decorrelation times

obtained for the different spectral reflectance channels

of MSG and compare them to those found for various

retrieved cloud properties. This analysis is done to de-

termine the temporal persistence of the different pa-

rameters. Furthermore, we demonstrate the reliability

of our cloud-field-tracking method.

The following results are based on Eq. (3) and calcu-

lated for the Lagrangian tracks (listed in Table B1). As

described earlier, these tracks are based on theNWCSAF

HRW motion vectors, which are mainly calculated from

HRV reflectance images. Figure 6 contrasts the Eulerian

(Fig. 6a) and Lagrangian (Fig. 6b) autocorrelation

function for the 0.6-mm channel, the 0.8-mm channel,

the HRV channel, and a coarse-grained HRV channel.

The coarse-grained HRV channel has been obtained

from the standardHRVchannel by averaging 33 3 pixels

to approximate the standard MSG horizontal resolution.

This averaging has been performed to test the sensitivity

of the decorrelation time to spatial resolution.

At this point, we caution that 30 cases might be too few

to assess whether some of the smaller differences in the

average decorrelation times are statistically significant.

However, larger differences are likely robust, especially

those found when contrasting the decorrelation times for

different cloud properties.

The average decorrelation times for all spectral channels

are nearly 2 times longer for the Lagrangian than for the

Eulerian perspective. Regardless of the perspectives, the

0.6-mm channel shows the highest decorrelation times,

while the HRV channel exhibits rather low values. This is

likely caused by the threefold higher spatial resolution

of the HRV channel, which better resolves small-scale

variability in the inhomogeneous structure of convective

cloud fields. If this small-scale and evidently short-lived

FIG. 4. Four selected cases displayed with the same markers as in Fig. 1, but magnified. The

RGB images show postfrontal cases over (a) Germany and (b) Poland, (c) a case over Poland

that is associatedwith a low over southernEurope, and (d) a case for a scattered cloud field over

southern Germany in a low horizontal wind gradient environment.
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cloud variability is removed by smoothing to lower

resolution, an increase in the temporal autocorrelation

is found. As the broadband spectral response of the

HRV channel overlaps the response functions of the 0.6-

and 0.8-mm channels, the temporal autocorrelation of

the HRV channel is expected to lie between that of both

narrowband channels. This is in fact observed, with a

Lagrangian decorrelation time for the coarse-grained

HRV channel of 31min, which lies between tD,L(0:8mm)

(27.7min) and tD,L(0:6mm) (33.2min). In the Eulerian

perspective, the relatively higher tD,E(0:8mm) is likely

caused by stationary patterns in the underlying surface

reflectance caused by the strong reflectance of vegetation

at 0.8-mm wavelength.

In the next step, the correlation analysis is repeated

for different cloud properties of the convective cloud

fields. The result for t, re, LWP, andNd is shown in Fig. 7.

We have additionally added the autocorrelation of the

0.6-mm reflectance as reference. In both perspectives,

the correlation functions of the 0.6-mm reflectance and

t show the best results and are hardly distinguishable.

This is expected, because the retrieval of t is highly de-

pendent on the 0.6-mm reflectance (Nakajima and King

1990; Roebeling et al. 2006) and therefore shares similar

spatial statistics. The shortest decorrelation times are

found for Nd and re, with both decorrelating faster than

20min. It remains unclear whether this behavior is

physically caused or is attributable to uncertainties in the

retrievals. In contrast, tD,L(LWP) (31min) lies in a similar

range with tD,L(t) (34.1min) and tD,L(0:6mm) (33.2min).

The shaded areas demonstrate a high standard deviation

of approximately 65min, which has been determined

from the case-to-case variations. In conclusion, even be-

sides possible shortcomings in the retrievals of cloud

properties due to subpixel variability, the structures of

t and LWP fields can be used to characterize the spa-

tiotemporal evolution of warm convective cloud fields. In

contrast to radiances, LWP in particular has the advan-

tage of being a physically meaningful and interpretable

quantity, which is readily available as output from at-

mospheric models. Hence, it can offer better insights into

the underlying physical processes of clouds, and is well

suited for model evaluation purposes. Our results also

demonstrate, however, that the observed decorrelation

time depends on sensor resolution, which needs to be

taken into account in such a model evaluation study.

c. Spatiotemporal characteristics of LWP fields

The relation between tD,E, tD,L, and the CMVs is dis-

played in Fig. 8 for all analyzed cases. While tD,E decays

with increasing CMV, tD,L remains relatively constant,

having a mean value of 31min. The average Eulerian de-

correlation time is 15.5min. For CMVs lower than 5ms22,

FIG. 5. Two-dimensional fields of cloud properties for case 23 on

19 May 2013 over Poland. The RGB composite is plotted in the

background. Illustrated are (a) LWP, (b) t, (c) re, and (d)Nd.While

the cloud properties contain only 163 16 low-resolution pixels, the

underlying RGB image involves 48 3 48 HRV pixels.

FIG. 6. (a) Eulerian and (b) Lagrangian autocorrelation function

averaged for all cases and applied to MSG’s standard visible

channels 0.6 and 0.8mm, the HRV channel, and an additional

coarse-grainedHRV channel withMSG’s standard resolution. The

shaded areas illustrate the standard deviation, and the dashed

vertical lines show the decorrelation times tD for the four channels.

The horizontal black line marks the decorrelation threshold.
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tD,E and tD,L are hardly distinguishable because the re-

sulting track length is smaller than the box area, and the

Eulerian andLagrangian cloudfields strongly overlap. If the

actual CMV increases above this value, tD,E drops rapidly.

The strong decay in tD,E is caused by the fact that the

convective cloud fields that are subsequently advected into

the box are both temporally and spatially separated from

the instantaneous cloud field. Thus, the advection-based

change in the LWP structures is added to the internal or

Lagrangian change of the LWP fields, an effect that in-

creases with wind speed. The shaded red and blue areas

indicate the standard deviation of tD,L and tD,E for a

running average over different cloud motion categories.

We now assume that the statistical properties of the

LWP fields are, to the first order, stationary, homoge-

neous, and described by Eqs. (4)–(6). As a result, the

Eulerian time scale is decreased by perturbations of the

spatial scales lD,x and lD,y that are advected by the cloud

motion; that is,

1

t
D,E

5
1

t
D,L

1
juj
l
D,x

1
jyj
l
D,y

. (7)

Here, u and y are the cloudmotion velocities in the x and y

directions, respectively. Please note that all time and space

scales are positively defined. In the limit of u and y ap-

proaching 0ms21, tD,E and tD,L become equal. In the limit

of a conserved, frozen LWP structure in a Lagrangian ref-

erence frame, that is, tD,L /‘, tD,E is solely determined

by advection and only depends on u, y, lD,x, and lD,y.

The above relation (7) is shown inFig. 8 by a dashedblue

line as a function of CMV, where constant, case-average

values of tD,L 5 31 min and lD,x 5 7:3 km have been as-

sumed. For faster CMVs, derived tD,E converge to ap-

proximately 5–10min because of the temporal resolution

constraints. A CMV uncertainty of 2ms21 is estimated

from the discretization bias, which corresponds to the

speed needed for one HRV pixel shift within 5min. The

uncertainty of the decorrelation time is around 5min and

has been derived from the standard deviation of tD,L

across all cases.

The above relation linking Eulerian and Lagrangian

time scales has important implications for the inter-

pretation of remote sensing observations. When ana-

lyzing the temporal characteristics of a time series of

ground-based observations, one has to keep in mind

that the observed changes obtained from a single point

measurement are always a combination of an in-

herent, Lagrangian temporal change, and an advective

component that depends on both wind speed and a

decorrelation length scale. Tracking these cloud fields

in a Lagrangian reference frame allows us to separate

both contributions but can be only performed with

either geostationary satellite observations or a network

of ground-based measurements with sufficient spatial sam-

pling like scanning radars or cloud cameras.

FIG. 7. As in Fig. 6, but on the basis of cloud products (re, t, LWP,

and Nd). The autocorrelation function of the 0.6-mm channel is

added for comparison.

FIG. 8. Relation between the Eulerian (blue) and Lagrangian

(red) decorrelation time tD and the CMV fromMSG observations.

The error bars represent the uncertainty of the CMV (2m s21) and

of tD (5min), while the shaded colored areas indicate the standard

deviation. The blue dashed line shows the calculated Eulerian

function given by Eq. (7).
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Figure 9 contrasts the observed and the estimated

Eulerian decorrelation times. The estimated Eulerian

decorrelation time is given by the reciprocal of Eq. (7)

and illustrates the link between the observed Lagrang-

ian decorrelation time, the cloud motion velocity, and

the spatial decorrelation length. The values show a

rather good correlation for low decorrelation times be-

tween 10 and 20min that are associated with high cloud

motion velocities, while the spread strongly increases for

high decorrelation times. The error bars of the estimated

decorrelation times that are based on Gaussian error

propagation even increase up to 70% for the high de-

correlation times. These deviations are due to the sensor

limitations of SEVIRI that lead to high tracking un-

certainties especially for low cloud motions in subpixel

range. However, the Pearson correlation coefficient of

0.81 demonstrates a reliable connection of the different

spatiotemporal scales.

In addition to the temporal characteristics, the spatial

characteristics of the cloud fields are considered by cal-

culating the autocorrelation Rk,S of the LWP fields as a

function of distance from the actual cloud-field position.

The quantities lD,x and lD,y are related to the typical

spatial scales of LWP in the x and y directions, re-

spectively. Averaged over all cases, lD, x is 6.5km and lD,y

is 8 km, with a standard deviation of 2km for both. The

difference between the two values might result from the

different sensor resolutions in both directions. Figure 10

shows the relation between lD,x, lD,y, and the mean cloud

diameter. The cloud diameter is determined as mean di-

ameter of connected cloudy areas in a box referring to

pixels that have a LWP higher than zero. An increase of

the correlation length with increasing cloud diameter is

observed. This implies that cumulus clouds lead to an even

shorter decorrelation length. In contrast, we expect that

much longer decorrelation lengths are obtained for more

homogeneous stratocumulus cloud decks.

A statistical link between the spatial and temporal

scales of cumulus cloud fields was already demon-

strated by Feijt and Jonker (2000). They showed that

for a cumulus and stratocumulus case, the temporal

scales of a high-resolution LWP time series measured

at one station could be matched to the spatial scales

inferred from an LWP field obtained from a polar-

orbiting satellite. The relation between correlation and

distance reported here is also consistent with the find-

ings of Slobodda et al. (2015). They report an expo-

nential decrease of correlation with increasing distance

especially for the three solar MSG channels (0.6, 0.8,

and 1.6mm), which carry information about the cloud

microphysical and optical properties. Further, they

concluded that correlation lengths are smaller for

scenes with lower cloud coverage. The much larger

decorrelation distances reported by Slobodda et al.

(2015) can result from the differences in methodology

and our selection of scenes with cumulus convection. In

their study, time series of fixed pixels representing

ground-based measurement sites have been correlated

as a function of pixel distance. We, however, apply the

correlation analysis to cloud-field structures in boxes

that are significantly larger than the field characteristic

scales. Furthermore, the decorrelation distance and

time increase strongly if the considered area is in-

creased (Cahalan et al. 1982). For a large region over

the Pacific Ocean, they found correlation lengths of up

to 600 km and Lagrangian correlation time scales ex-

ceeding two days. Because of the differences in region

area, methodology, and data, a comparison of our re-

sults with their reported values is not possible.

d. Temporal evolution of the cloud field-averaged
LWP

The total temporal change of the box-averaged LWP

is given by

D
t
(LWP)5 ›

t
(LWP)1 u � =(LWP). (8)

Here, the total derivative Dt(LWP) is given as sum of

the partial derivative ›t(LWP) and the advection of the

gradient =(LWP) with horizontal wind speed u.

FIG. 9. Relation between the observed and estimated Eulerian

decorrelation times. The estimated time connects the Lagrangian

decorrelation time with the spatial decorrelation length and the

cloud motion velocity according to Eq. (7). The observed average

error is given as 5min, while the estimated error results from

Gaussian error propagation. The red dashed line illustrates the

identity line. The green dashed line shows the linear fit function,

and the surrounding shaded area spans the 5th and 95th percentiles

using a bootstrap approach that indicates the error variability.
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In this part of the study, we investigate the temporal

change in average LWP for warm convective clouds.

LWP is connected to the total mass of condensed water

assuming that changes in box area and contributions

from frozen hydrometeors can be neglected. Re-

formulating Eq. (8), a discretized version is given by

D
t
(LWP)5 d

t
(LWP)1 ud

x
(LWP)1 yd

y
(LWP), (9)

where Dt(LWP), dt(LWP), and dx,y(LWP) denote the

Lagrangian change, Eulerian change, and local spatial

differences, respectively. On the one hand, if dt(LWP)

is obtained from the Eulerian perspective, it can be

directly compared with ground-based measurements.

On the other hand, if we assume that LWP is affected

by neither precipitation nor glaciation, Dt(LWP) is di-

rectly linked to evaporation and condensation within

the cloud field.

The derivative Dt(LWP) is determined along the

Lagrangian trajectory. Consequently Dt(LWP). 0 im-

plies an increase in the mass of liquid water, that is,

condensation, while Dt(LWP), 0 implies evaporation.

The advective part is divided into two terms, the spa-

tial change along the x direction given by dx(LWP) and

along the y direction given by dy(LWP), and multiplied

by the CMVs u and y, respectively. As in Eq. (7),

Dt(LWP) and dt(LWP) are equal if the advective part

is zero.

The time series Dt(LWP) and dt(LWP) and the total

average LWP in both perspectives are shown in Fig. 11

for two exemplary cases. The bars illustrate the magni-

tude of the LWP change within 5min but are scaled to

rate per minute. The right y axis represents the cloud-

field-averaged LWP time series concerning the Eulerian

(blue line) and the Lagrangian (red line) perspective.

The shaded areas display the absolute difference

between Dt(LWP) and dt(LWP). For red areas, the

Lagrangian changes dominate the local tendencies.

Figure 11a shows case 2 over northern Germany close to

the North Sea. A cold front passed the region before the

start of the track. The advection velocity was 9ms21,

which caused a track length of approximately 60 km.

Although the boxes are overlapping for most of the

track, Eulerian and Lagrangian changes are quite dif-

ferent. The average LWP is clearly increasing in the

Lagrangian perspective, while the LWP change at a

fixed location is much smaller, resulting in only a slight

increase in LWP. This implies that cumulus clouds grow

along their path because of condensation. However, this

increase is masked to a large extent by advection in the

Eulerian perspective. In contrast, case 30 (see Fig. 11b)

represents an example for a rather highCMVof 18ms21.

FIG. 10. Relation between the decorrelation length lD in the east–

west (green) and north–south (orange) directions and the average

cloud diameter d. The error bars represent the uncertainty of d (2 km)

and lD (4 km), while the shaded colored areas indicate the standard

deviation. The solid lines show the linear fit of both functions.

FIG. 11. Time series of the box-averaged LWP changes dt(LWP)

and Dt(LWP) for the Eulerian (blue bars) and the Lagrangian (red

bars) perspective, respectively. The error bars illustrate the standard

deviation, and the gray line shows the absolute difference between

Dt(LWP) and dt(LWP). Red shaded areas indicate jDt(LWP)j .
jdt(LWP)j, whereas blue areas indicate the opposite. The y axis on

the right-hand side demonstrates the Eulerian (blue dashed line) as

well as the Lagrangian (red dashed line) time series of the cloud-field

average LWP. Shown are (a) case 2 and (b) case 30.
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For a fixed location, the mean LWP is continuously

increasing, while the tracked cloud field exhibits a dif-

ferent temporal evolution. A maximum LWP of around

20 gm22 is reached after 40min, before it drops down

again to a small value of 5 gm22, indicating the dissi-

pation of the cloud field.

These two cases illustrate that the temporal changes of

cloud properties are dependent on the observational per-

spective, and that the Lagrangian is preferable over the

Eulerian perspective for a physical interpretation of gov-

erning processes. This is especially true in the presence of

strong winds and large gradients in the cloud properties.

The accuracy of the Lagrangian analysis is, however, af-

fected by tracking uncertainties in addition to other un-

certainties, which has to be taken into account in the

interpretation of quantitative results. In the limit of low

CMVs, both perspectives should converge to the same

result. In our setup, however, the limited resolution of

motion vectors that is fixed to multiples of the pixel reso-

lution introduces complications for very low wind speeds.

5. Conclusions and outlook

In the present study, we have investigated the spa-

tiotemporal evolution of warm convective cloud fields

obtained from Meteosat SEVIRI observations. An ad-

vantage of Meteosat and similar geostationary satellites

is their ability to monitor convective clouds and to fully

resolve the cloud life cycle from the early stages of de-

velopment on. We have used 30 cases of convective

clouds under different synoptic conditions over central

Europe as the basis of this investigation.

Solar reflectances have been used together with cloud

products (HRV-CMa, CT, t, re, LWP, Nd, and CMV) to

characterize the spatiotemporal evolution of convective

cloud fields. First, trajectories have been determined from

sequences ofHRVimages.Boxes covering 163 16SEVIRI

standard-resolution pixels have been used to obtain an es-

timate of the mean properties of the convective clouds. The

temporal and spatial persistence of different cloud proper-

ties has been studied with special focus on the differences

between the Eulerian (i.e., fixed in space) and the La-

grangian (i.e., track following) perspectives. Assuming

a Gaussian function for the autocorrelation function,

which corresponds to the assumption of a first-order

autoregressive process, the e-folding value has been

determined as characteristic time and space scales.

The decorrelation times of SEVIRI’s solar re-

flectances has been studied first. The decorrelation times

for the 0.6-mm channel are generally larger than the

decorrelation times for the 0.8-mm channel, likely be-

cause of influence of surface reflectance in particular

caused by vegetation. In addition, the decorrelation of

theHRV channel at high spatial resolution (1.23 2km2)

and SEVIRI standard resolution (3.63 6 km2) has been

compared, which has been obtained by coarse graining.

The reduction in resolution results in an increase of

around 3–5min in the corresponding decorrelation

times. This implies that small-scale variability in cloud

structures decorrelate faster, and thus the decorrelation

times are highly sensitive to the spatial resolution of the

satellite sensor.

The decorrelation times of different retrieved cloud

products have been determined and compared to those

obtained for the reflectances. It has been found that

fields of re and Nd exhibited much less persistence than

LWP and t, which showed comparable decorrelation

times to the 0.6-mm channel. This implies that re and Nd

are not suited as tracers for tracking. It remains unclear

whether this behavior is attributable to physical reasons

or is the consequence of retrieval uncertainties.

Based on our previous findings, LWP fields have been

used in our further analyses, as LWP is a quantity that

should be insensitive to surface heterogeneity, facilitates a

process-based interpretation, and is readily available from

atmospheric models and thus allows a direct comparison

with model results.

The temporal evolution of box-averaged LWP was

contrasted for cloud fields adopting both the Lagrangian

and Eulerian perspectives. Excluding precipitation and

freezing, changes in LWP in a Lagrangian reference

frame are attributable to condensation and evaporation,

which is essentially triggered by local convection and

mixing processes. For our cases, an average decorrela-

tion time of about 31min has been found. The budget in

an Eulerian or fixed-in-space reference frame can be

significantly influenced by the advection of LWP gradi-

ents. Thus, the Eulerian decorrelation time is always

lower than the Lagrangian one and depends also on the

wind speed and the spatial decorrelation length scale.

Typical decorrelation lengths have been found to be

6.5 km in the x direction and 8km in the y direction. The

differences between Eulerian and Lagrangian time se-

ries have been discussed for two cases.

Several sources for uncertainties have been identi-

fied that can affect the relation between the charac-

teristic scales. The spatial decorrelation scale of 7.3 km

is close to the sensor resolution of Meteosat. Further-

more, warm convective clouds often exhibit slow cloud

motion velocities. This leads to uncertainties in our

cloud-field tracking, because the spatial resolution of

the narrowband channels and hence also the cloud

properties is approximately 3.6 3 6 km2, which is

coarser than the displacement of the cloud field within

5min. To overcome this limitation and take into account

subpixel shifts for an accurate estimation of spatial scales,
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the use of the HRV channel with a threefold higher

spatial resolution is essential.

This study demonstrates that the spatiotemporal char-

acterization of warm convective clouds is currently limited

by the spatial sensor resolution of Meteosat. Carbajal

Henken et al. (2011) already found that SEVIRI’s standard

resolution is not sufficient to fully resolve the small-scale

spatial variability required for the identification of warm

convective clouds, and used an estimate of t based on the

HRV channel. The additional use of theHRV channel can

thus not only improve the tracking accuracy (Zinner et al.

2008), but can also help to better resolve small-scale cloud

variability. A successful application of the HRV re-

flectances to improve the spatial resolution of narrowband

images was presented by Deneke and Roebeling (2010).

Bley and Deneke (2013) developed an HRV-CMa to im-

prove the detection of small-scale convective clouds. The

HRV channel was further applied to sharpen partly cloudy

IR satellite pixels for improving convective initiation de-

tection schemes (Mecikalski et al. 2013).

These studies support the concept that the HRV

channel can help to overcome the limitations due to

SEVIRI’s standard spatial resolution noted in this work.

Within the framework of the Germany-wide research

initiative High Definition Clouds and Precipitation for

Climate Prediction [HD(CP)2] (Dipankar et al. 2015), the

authors are therefore currently developing a cloud prop-

erty retrieval based on the HRV channel, which includes

downscaled cloud properties (t, re, and LWP). Future

plans also include the application of the spatiotemporal

analysis presented here to the high-resolution simulations

of icosahedral nonhydrostatic (ICON)-LES, which cover

Germany with a horizontal resolution of 150m.

The analysis demonstrates the advantage of the La-

grangian perspective for studying convective and advec-

tive processes that are influenced by cloud variability.

These results should be considered in future modeling

studies to evaluate and improve stochastic parameteri-

zations of cumulus convection. Further comparisons of

the spatiotemporal characteristics of convective clouds

with high-resolution model results are essential to better

understand and reduce their uncertainties.

On the one hand, the methods used in this investigation

can serve as basis for an evaluation of the realistic

TABLEB1. Overview of cases including the track number, time and date of the track starting box as well as its longitude and latitude, the

averageCMV, the track length between the central pixel of the starting box and the central pixel of the ending box, the Eulerian (tD,E) and

Lagrangian (tD,L) decorrelation time, and the decorrelation length in the x direction (lD,x) and y direction (lD,y).

Track Time and date Lon (8E) Lat (8N) CMV (m s21) Track length (km) tD,E (min) tD,L (min) lD,x (km) lD,y (km)

001 1200 UTC 14 Apr 2012 13.12 51.5 6.0 43.1 20.2 38.5 10.9 9.8

002 0930 UTC 16 Apr 2012 8.73 53.72 8.6 62.2 18.1 41.1 5.1 6.4

003 1220 UTC 16 Apr 2012 11.72 52.85 8.9 63.8 11.8 38.8 5.2 7.8

004 1220 UTC 16 Apr 2012 3.33 48.44 11.1 79.8 8.7 31.3 5 6.5

005 1340 UTC 16 Apr 2012 12.14 52.5 9.1 65.4 13.6 39.7 4.4 6.8

006 1200 UTC 21 Apr 2012 14.45 52.78 6.9 49.5 17.2 23.1 4 8.2

007 1200 UTC 21 Apr 2012 20.68 47.44 12.4 89.6 8.8 34.6 7.4 9

008 1200 UTC 21 Apr 2012 14.37 52.39 7.7 55.4 15.1 26.8 5.2 10.2

009 1330 UTC 4 May 2012 12.1 49.7 3.8 27.5 21.7 37.3 7.3 6.1

010 1200 UTC 17 May 2012 18.54 51.53 10.3 74.0 10.3 25.9 5.5 5.7

011 1230 UTC 22 May 2012 10.69 52.59 6.4 45.9 22.5 27.0 6.1 7

012 1230 UTC 22 May 2012 11.7 51.94 6.3 45.7 14.1 35.6 6.2 6

013 1230 UTC 22 May 2012 16.66 52.57 6.3 45.1 7.6 16.6 3.9 5.1

014 1200 UTC 25 May 2012 20.14 50.75 6.0 43.5 21.6 28.4 6.8 8.6

015 1020 UTC 13 Apr 2013 3.8 50.6 10.5 75.8 13.4 29.8 8.7 9.2

016 1130 UTC 16 Apr 2013 11.47 53.56 10.0 71.9 15.8 27.7 7.6 12.4

017 1250 UTC 18 Apr 2013 7.5 52.6 17.7 127.2 12.5 31.2 8.9 8.6

018 1200 UTC 12 May 2013 3.18 49.4 9.8 70.4 9.3 29.4 7.4 10.4

019 1240 UTC 12 May 2013 9.09 51.35 9.0 64.8 8.1 29.9 9.7 12.4

020 1240 UTC 12 May 2013 5.94 47.49 8.0 57.5 11.7 31.4 5.3 5.1

021 1140 UTC 15 May 2013 0.78 48.84 11.4 82.2 13.7 31.9 6.5 8.8

022 1250 UTC 15 May 2013 20.68 47.44 9.9 71.3 8.7 26.7 5.4 8.1

023 1150 UTC 19 May 2013 18.3 52.67 7.3 52.4 13.7 31.1 4.8 7.9

024 1230 UTC 19 May 2013 18.6 52.5 8.1 58.2 16.8 28.3 4.8 8.2

025 1250 UTC 19 May 2013 14.47 51.92 4.2 30.0 21.7 28.3 6.1 7.7

026 1100 UTC 8 Jun 2013 5.51 49.34 2.3 16.8 36.1 34.4 8.1 10.4

027 1100 UTC 8 Jun 2013 9.645 51.2 0.6 4.5 31.6 32.8 8 8

028 1300 UTC 8 Jun 2013 9.92 48.3 1.3 9.1 24.0 27.1 4.9 5.5

029 1300 UTC 8 Jun 2013 9.5 48.8 1.3 9.4 29.6 42.2 5.4 7.8

030 1250 UTC 15 Jun 2013 5.82 52.32 17.3 124.7 6.8 38.2 9.7 8.2
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representation of clouds in ICON-LES including their

spatiotemporal behavior. On the other hand, the high

resolution of themodel runs enable a quantification of the

resolution dependence of the temporal and spatial

scales determined in this article, and can thus help to

quantify the information gains expected from future

geostationary satellites such as Meteosat Third Genera-

tion with improved spatial and temporal resolutions. It

will have a 10-min standard repeat cycle for the full disk

(Stuhlmann et al. 2005) and an improved spatial resolu-

tion of 1km for all solar channels, which will offer the

great opportunity to investigate the temporal evolution

of cumulus cloud fields over other relevant climatic

regions (e.g., the Atlantic warm pool) using the tech-

niques introduced here.
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APPENDIX A

Configuration of the HRW Tools

The configuration file of the HRW product has been

adapted to obtain more tracers especially for small cu-

mulus structures with low reflectance values. This could

be realized by considering more tracers for the vector

calculation even for a slightly smaller quality threshold.

More details can be found in the configuration text file

that is available in the online supplemental material.

APPENDIX B

Overview of Cases

Table B1 gives an overview of all analyzed cases in-

cluding the track identification number, date and time of

the track starting box as well as its longitude and lati-

tude, the average CMV, the track length between the

central pixel of the starting box and the central pixel of

the ending box, the Eulerian (tD,E) and Lagrangian

(tD,L) decorrelation time, and the decorrelation length

in the x (lD,x) and y (lD,y) directions.
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