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ABSTRACT

Object-basedmetrics are adapted and applied to geostationary satellite observations with the evaluation of

cloud forecasts in convective situations as the goal. Forecasts of the convection-permitting German-focused

Consortium for Small-Scale Modeling (COSMO-DE) numerical model are transformed into synthetic

observations using the RTTOV radiative transfer model, and contrasted with the corresponding real ob-

servations. Threshold-based segmentation techniques are applied to the fields for object identification. The

statistical properties of the traditional measures cold cloud cover and average brightness temperature am-

plitude are contrasted to object-based metrics of spatial aggregation and object structure. Based on 59 case

days from the summer half-years between 2012 and 2014, a variance decomposition technique is applied to the

time series of the metrics to identify deficits in day-to-day, diurnal, and weather-regime-related variability of

cold cloud characteristics in the forecasts. Furthermore, sensitivities of the considered metrics are discussed,

which result from uncertainties in the satellite forward operator and from the choice of parameters in the

object identification techniques.

1. Introduction

The process of evaluating the quality of a forecast is

called forecast verification, and is an indispensable part

of model-based forecast development in general and

numerical weather prediction (NWP) model develop-

ment in particular. Murphy (1993) defines quality as the

correspondence between forecasts and observations.

The purpose of forecast verification is to confirm that a

model indeed has skill, and to ascertain that recent

model changes result in improved forecasting capabilities

compared to previous model versions. Moreover, it en-

ables users of the forecasts to assess their quality and to

identify typical model deficiencies and systematic errors.

Over the past few decades most of the verification

efforts targeting NWP models have focused on scores

based on a point-to-point comparison. These verification

measures, referred to here as traditional scores, are in-

sufficient for the evaluation of cloud and precipitation

processes in high-resolution NWP forecasts since they do

not take into account information about the spatial

structure and irregular morphology of these fields [see

Baldwin andKain (2006), Casati et al. (2008), Rossa et al.

(2008), and Wilks (2011) for a detailed description of

traditional scores]. For example, the traditional scores

show counterintuitive behavior if a localized forecast

feature of correct size and structure is displaced in time or

space. In this case, poor verification scores are obtained

because the displacement is penalized twice: first, as the

forecast misses the feature identified in the observa-

tions and, second, as the forecast feature produces a

false alarm.

To avoid this so-called double-penalty problem, and

to get scores that correspond more closely to our sub-

jective visual notion of forecast quality, new techniques

have been developed for the evaluation of spatial fields

over the last decade (see, e.g., Ebert 2008; Rossa et al.

2008; Casati et al. 2008; Gilleland et al. 2009). One im-

portant subset of these spatial approaches features

object-based methods, which are concerned with certain

structural properties of the meteorological forecast

fields. Object-based methods transform a continuous

forecast into a categorical field, usually relying on

a Current affiliation: Deutscher Wetterdienst, Offenbach,

Germany.

Corresponding author: Martin Rempel, martin.rempel@dwd.de

Denotes content that is immediately available upon publica-

tion as open access.

AUGUST 2017 REMPEL ET AL . 3161

DOI: 10.1175/MWR-D-16-0480.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:martin.rempel@dwd.de
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


threshold-based segmentation techniques. Metrics are

thereafter constructed either from the difference in the

individual object properties or from the distributional

characteristics of objects. Most of the previous devel-

opment effort of object-based methods was devoted to

the evaluation of precipitation forecasts, for instance,

the contiguous rain area (CRA; Ebert and McBride

2000; Ebert and Gallus 2009), the Method for Object-

Based Diagnostic Evaluation (MODE; Davis et al.

2006a,b, 2009), and the structure, amplitude, and loca-

tion (SAL; Wernli et al. 2008) measure. So far, consid-

erably less research has focused on the object-based

evaluation of cloud processes. Somemore recent studies

investigated the application of SAL for the evaluation of

binary cloudmasks (Crocker andMittermaier 2013), the

distribution of tropical convective cloud sizes and life-

times (Negri et al. 2014; Machado and Chaboureau

2015), and the use of SAL for upper-tropospheric water

vapor fields (Weniger and Friederichs 2016). The latter

study furthermore noted unsatisfying sensitivities of

object-based metrics on the parameters of the object

identification methods. Based on these investigations,

the aim of our present study is to develop and analyze

object-based metrics for the evaluation of cloud fore-

casts using infrared observations from a geostationary

satellite. We especially focus on the adaptation of the

SAL method for the assessment of cold cloud charac-

teristics and investigate the statistical properties of its

individual components.

SAL was proposed to measure the quality of pre-

cipitation forecasts in a statistical sense. It does not

demand a one-to-one correspondence between individ-

ual objects. SAL has three components that are related

to the (i) structure, (ii) amplitude, and (iii) location of

objects. Over the years, SAL has become a workhorse

for the quantitative evaluation of precipitation forecasts

from high-resolution forecasts (e.g., Hanley et al. 2013;

Schneider et al. 2014; Kann et al. 2015; Lindstedt et al.

2015). A further measure that we have included in our

analysis is the so-called simple convective aggregation

index (SCAI) that is related to the arrangement of

clouds within the domain. It was developed by Tobin

et al. (2012) to investigate the relationships between

self-aggregation of tropical deep moist convection

and large-scale environmental properties (e.g., middle-

and upper-tropospheric humidity, precipitablewater, and

turbulent surface fluxes). SCAI describes the ratio be-

tween the actual degree of convective disaggregation

and a potential maximum degree of disaggregation.

In general, the verification of cloud forecasts with

geostationary satellite observations can be either based

on satellite products (e.g., Kidd et al. 2013) or utilize an

observational forward operator comparing simulated

and real observations (e.g., Eikenberg et al. 2015). For

the latter approach, which is adopted in our study, the

model forecasts need to be transferred into observation

space using a radiative transfer model. We apply a re-

vised Synthetic Satellite imagery (SynSat) scheme (Senf

and Deneke 2017) here using the computationally very

efficient RTTOVmodel for simulating infrared satellite

radiances (e.g., Saunders et al. 1999). The resulting

synthetic satellite images depict the spatial distribution

of the top-of-the-atmosphere outgoing radiation for the

spectral response of a chosen satellite sensor and a

perfect model forecast, and thereby enable a direct and

easy comparison with real observations. Synthetic sat-

ellite images have been used for model verification for

more than 20 years. One of the first studies using syn-

thetic infrared Meteosat images was performed by

Morcrette (1991), who evaluated the diurnal cycles of

surface temperature and cloudiness of the global Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) model. Jankov et al. (2011) investigated

several microphysical schemes of theWeather Research

and Forecasting (WRF) Model with respect to the ac-

cumulated precipitation and the infrared brightness

temperatures of the GOES 10.7-mm channel. It was

shown that the synthetic satellite images revealed an

overestimation of clouds, while the precipitation showed

only slight differences. Bikos et al. (2012) depicted the

importance of synthetic satellite imagery in operational

forecasting, since it allows us to visualize atmospheric

processes and monitor cloud development from an in-

tegrated perspective instead of providing an analysis of

individual model output fields, and therefore a very

quick assessment of the accuracy of model forecasted

features is possible.

We illustrate the object-based evaluation process on

the basis of operational cloud forecasts from the

convection-permitting German-focused Consortium for

Small-Scale Modeling (COSMO-DE) model. Several

earlier studies have identified a distinct bias in the fre-

quency of simulated cold brightness temperatures

(Pfeifer et al. 2010; Böhme et al. 2011; Eikenberg et al.

2015). They report that COSMO-DE significantly

overestimates the occurrence frequency of low bright-

ness temperatures in the 10.8-mm channel of the Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI)

aboard Meteosat Second Generation (MSG) satellites

at around 230K compared to observations. Recently,

Senf and Deneke (2017) discussed how a significant

portion of this cold bias can likely be attributed to the

uncertainties and inconsistencies in the representation

of cirrus-radiative properties. In addition, Keller et al.

(2016) reported that biases in the diurnal variation of

COSMO-DE’s cold cloud cover are reduced when the
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model-internal ice-microphysical formulation is

switched from the operational one-moment to a two-

moment scheme.

The present study is structured as follows. The obser-

vational data from the geostationaryMeteosat satellite as

well as the simulated data from the forecast model

COSMO-DE are introduced in section 2. This is followed

in section 3 by a description of the case-day selection, the

object identification algorithm, and the metrics utilized.

In sections 4 and 5 we present the results of our study.

First, we discuss the distributional characteristics of the

considered object-based metrics. Second, we analyze the

temporal behavior of the metrics, perform a de-

composition of variance into day-to-day and intraday

components, and discuss their typical diurnal cycles for

different weather regimes. A discussion of the sensitiv-

ities of the object-based metrics is presented in section 6.

Finally, conclusions are drawn in section 7.

2. Data

a. Observational data

We utilize observations of only one narrowband in-

frared channel with a central wavelength of 10.8mm of

the imaging radiometer SEVIRI aboard the geosta-

tionary MSG satellites operated by EUMETSAT

(Schmetz et al. 2002). Besides this channel, SEVIRI

has a total of 11 narrowband and 1 broadband high-

resolution visible channel. For this study, data from the

primary scan service are used, which has an image up-

date cycle of 15min and an orbital position at 08 longi-
tude. The targeted domain corresponds to that of the

COSMO-DE NWP model, which is described more

precisely in the next section. Over this domain, the

considered SEVIRI channel has an approximate res-

olution of 4 3 6 km2, which is coarser than the

COSMO-DE grid size. Before a comparison, we apply

nearest-neighbor interpolation to map SEVIRI ob-

servations onto the COSMO-DE grid.

The selected SEVIRI 10.8-mm channel is a window

channel, which means that it is only slightly influenced by

atmospheric gases and mostly shows the radiative signa-

ture of the surface or clouds. Thus, the observed 10.8-mm

brightness temperatures (BT10.8) correspond to the

cloud-top temperature for optically thick clouds, but are

significantly warmer for semitransparent cirrus as a result

of semitransparency and surface contributions.

b. Simulated data

The operational short-range weather forecast model of

the German Weather Service, COSMO-DE (Baldauf

et al. 2011), is a convection-resolving nonhydrostatic NWP

model with a horizontal grid spacing of 2.8km initialized

each 3h running 21h ahead. The COSMO-DE domain

covers Germany, Switzerland, Austria, the Netherlands,

Belgium, andparts of the neighboringEuropean countries.

The focus in this study is on convective situations,

since knowledge about the NWP model’s performance

as well as the rapid use of observational data is essential

in such situations. Therefore, forecasts are selected for

59 case days for the years 2012 (20 days), 2013 (20 days),

and 2014 (19 days), containing deep moist convection in

the domain of COSMO-DE.A further description of the

case selection is found below. Three-dimensional fore-

cast fields including thermodynamic and hydrometeor

properties have been retrieved from the data archive for

four initialization times (0300, 0600, 0900, and 1200UTC).

The output has a temporal frequency of 1 h, and only

the time period between 0600 and 1800UTCwas chosen

for further analysis. Therefore, for each day we consider

13 scenes from the COSMO-DE initializations at

0300 and 0600UTC and 10 (7) scenes fromCOSMO-DE

0900 UTC (1200 UTC) and, thus, altogether 2537 scenes

were included. A revised SynSat scheme was applied to

the COSMO-DE dataset for the calculation of synthetic

brightness temperatures [see Senf and Deneke (2017)

for further details on the method]. Operationally avail-

able SynSat schemes are also examined to assess the

sensitivity of the object-based metrics to changes in the

satellite forward operator.

As an illustrative example, the scene at 1400 UTC

6 August 2013 is depicted in Fig. 1. Figure 1a shows the

observed MSG SEVIRI BT10.8 field, and Fig. 1b the

synthetic BT field for the 0600 UTC initialization of

COSMO-DE (COSMO-DE 0600 UTC). The observa-

tions show three convective systems over Germany and

Switzerland, as well as smaller convective clouds over

France, the Czech Republic, Poland, and the Dinaric

Alps. Additional cirrus clouds are also visible over parts

of Belgium, the Netherlands, and Germany. Compared

to this, COSMO-DE 0600 UTC shows only two of these

convective systems. The convective clouds over the

eastern part of Germany, Poland, and the Czech Re-

public are not present in the model forecast, but nu-

merous developing cells are visible from southern

Germany to the Dinaric Alps. Further, COSMO-DE

0600 UTC shows a significantly higher amount of cirrus

cloud cover across the whole domain.

3. Method

a. Case days

For the selection of suitable case days, the archive of

convective forecasts by the European Storm Forecast
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Experiment (ESTOFEX) network (www.estofex.org)

was consulted as the first criterion in identifying po-

tential convective situations. Here, the focus was

placed on the period from April to September for the

years 2012–14. Days with such a forecast were further

analyzed by querying the European Severe Weather

Database (ESWD; Dotzek et al. 2009). Within this

database, entries localized in Germany and especially

those with associated phenomena of severe thunder-

storms (e.g., hail, strong winds, heavy precipitation, or

tornadoes) were considered. Afterward, days that had

both a convective forecast and at least one entry in

ESWD were subjectively reviewed, considering dif-

ferent instability parameters based on the Global

Forecast System (GFS) reanalysis, with consideration

of the KO index, lifted index, convective available

potential energy (CAPE), and the vertical motion at

500 hPa. The aim was to also obtain an overview of the

synoptic situation of each day. In the end, 59 case days

were found, which will be used for the statistical

analysis.

Akkermans et al. (2012) and Böhme et al. (2011)

showed that the forecast quality differs for various large-

scale synoptic situations. Therefore, the large-scale

synoptic situation must also be considered for the in-

vestigation of a diurnal cycle of deep convective clouds.

In our study, the operational circulation pattern classi-

fication of the German Weather Service was utilized,

which applies the subjective method of Baur (1963). The

frequency of the obtained weather regimes is depicted in

Fig. 2. Here, the dark gray bars indicate the three most

frequent patterns, which are considered for the in-

vestigation of the diurnal cycle of metrics.

b. Object identification

The computation of object-based metrics requires the

identification of individual cloud objects within the

considered domain both in the observed and synthetic

satellite images. Here, the aim is to identify cold cloud

cover that is associated with the development of deep

convective clouds. For the distinction between such

cloud cover and the environment, a BT10.8 threshold of

240K is used, which is consistent with numerous pre-

vious studies (Roca and Ramanathan 2000; Tobin et al.

2012; Feidas andGiannakos 2012). However, this means

that cirrus clouds are also included in the investigation.

The individual components of SAL are unfortunately

sensitive to the considered value range (i.e., are not in-

variant to linear transformations). We therefore trans-

form the BT10.8 field into a first analysis step. For this,

the threshold value of 240K is subtracted from the

original BT10.8 field, and negative values are set to zero

afterward. The resulting BT10.8 amplitude is termed

DTi, where i is the index of subsequently numbered grid

points in the domain. In a second step, connected

structures are identified with a standard segmentation

method that labels contiguous nonzero grid boxes with a

unique index using eight connectivity (i.e., two grid

boxes are combined into the same cluster if they are

adjacent in the horizontal, vertical, or diagonal di-

rections). Each compound of connected grid boxes with

the same index is called an object in the following.

FIG. 1. Satellite imagery of a convective scene at 1400 UTC (1500 LT) 6 Aug 2013 over central Europe. The

(a) observed and (b) synthetic BT10.8 fields for COSMO-DE initiated at 0600 UTC. For plotting, standard color

enhancement is used to improve the perception of cold cloud tops. Thus, BTs warmer than 240K are shown in gray-

shaded colors and colder BTs up to 210K are highlighted in colors from blue to red.
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Furthermore, we denote a set of individual objects as a

cluster. In the last step, objects with an area-equivalent

diameter smaller than 20km are excluded because of

large fluctuations in their numbers [see, e.g., Weniger

and Friederichs (2016) for a discussion of sensitivities

due to this parameter].

c. Definition of object properties

Each grid box i carries the information about the field

value DTi, the position xi, and the gridbox areaAi. With

these parameters, specific object characteristics can be

constructed as follows. An object m is composed of in-

dividual grid boxes whose indices are collected in the

index set I m, which is a subset of the full domain index

set. The object m can be characterized by its maximum

BT (DTm,max) and a mean BT:

hDTi
m
5

1

N
m

�
i2I m

DT
i
, (1)

where Nm denotes the number of grid boxes in the mth

object and the brackets are a shortcut for the arithmetic

average over all object points.

For the object positionXm, we define a second type of

average, an amplitude-weighted average, to take the

typical distribution of DT within the object into account.

For this, the weights

w
i
5

DT
i

N
m
hDTi

m

(2)

are defined as the ratio between individual values DTi

and the object-average hDTim. The center of mass for

each object is hence given by

X
m
5 �

i2I m

w
i
x
i
. (3)

We furthermore define the object area Am as the sum

of individual gridbox areas, as well as the object

volume Vm and object shape Sm. The volume

represents a metric that aims to capture the overall

structure of the objects. This method was introduced

by Wernli et al. (2008) and provides combined in-

formation about the object size and shape. For this,

individual field values DTi are normalized by the

object-maximum value DTm,max and finally summed

over the object

V
m
5 �

i2m

DT
i

DT
m,max

5
N

m
hDTi

m

DT
m,max

. (4)

This step is illustrated in Fig. 3b. Here, the gray-

shaded area corresponds to Vm. The volume is high

(low) when the objects are large (small) and/or flat

(more peaked).

To distinguish between object size and shape, a metric

is constructed to identify only the shape of the objects

S
m
5

V
m

N
m

. (5)

From Eq. (4), the object shape is simply the ratio be-

tween the object-average and object-maximum DT
values. In Fig. 3c, the gray-shaded area represents again

the cross section through the center of a sine-shaped

circular cone while the reddish rectangle shows a cylin-

der with similar base and height. The object shape Sm is

now the ratio between both. Values of Sm can range

between 0 and 1, whereby 0 depicts a strongly peaked

object with a high maximum in only one grid box and

very small values in the other ones within the object. An

Sm value of 1 implies a plane object with the same fea-

tures but an arbitrary BT within the whole object.

Conically or hemispherically shaped objects attain re-

spective values of 1/2 and 2/3 [see Wernli et al. (2008) for

illustrative examples].

FIG. 2. Number of weather regimes occurring within the con-

sidered case days. The dark gray bars indicate the three most fre-

quent weather regimes, which are used for the investigation of the

diurnal cycle. The following abbreviations are used: BM, zonal

ridge across central Europe; HF, Scandinavian high; HN, Icelandic

high; HNF, high over Scandinavia–Iceland; S, southerly; SE,

southeasterly; SW, southwesterly; TB, low over the British Isles;

TM, low (cut off) over central Europe; TrM, trough over central

Europe; TrW, trough over western Europe; and W, westerly.
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d. Definition of cluster properties

As stated above, we define a cluster as a set of indi-

vidual objects, in our case all objects that are located

within the interior of the domain (i.e., which do not

touch the domain edges) and fulfill the minimum size

criterion. The cluster averages are defined similarly to

those defined on objects. Following Wernli et al. (2008),

we subdivide the cluster characteristics into properties

related to (i) amplitude or amount, (ii) location or spa-

tial arrangement, and (iii) structure. The final set of

derived object-based metrics is listed in Table 1.

1) AMPLITUDE

Most basic cluster characteristics related to the num-

ber of objects are the total number of objectsM and the

total areal coverage of objects cc, which is calculated

from the ratio of the total cluster area AC and domain

areaAD. For a cluster amplitude estimate, we define the

cluster-average BT as an arithmetic mean:

hDTi
C
5

1

M
�
M

m51

hDTi
m
. (6)

It describes a mean cloud-top temperature excess over

the considered threshold of 240K, only accounting for

selected cloud objects and assuming that the clouds are

opaque. The domain-mean hDTiD is calculated simi-

larly; however, it includes all DTi values that have been

set to zero. It is therefore strongly coupled to the total

areal coverage:

hDTi
D
’ cc3 hDTi

C
. (7)

The latter is an adaptation of the amplitude measure

used in Wernli et al. (2008). A higher (lower) domain-

mean BT corresponds to a large (small) cold cloud cover

and/or lower (higher) cloud-top temperatures. An ex-

ample for both mean values is shown in Fig. 3a.

2) LOCATION

The center of mass of the clusterXC is calculated from

the individual object centers.We apply a similar strategy

as in Eq. (3) and define a weighted average as

X
C
5 �

M

m51

W
m
X

m
, (8)

FIG. 3. Section across the center of a sine-shaped circular cone (gray shaded area) as an idealized object to illustrate metrics with

information about the intensity of an object. (a) Here, hDTiC (blue line) and hDTiD (red line) denote the cluster or domain average of the

transformed BT field and DTmax is the maximum value of the object. (b) Cross section scaled with DTmax. The gray-shaded area now

corresponds to a scaled volumeVm of the object. (c) As in (b), but after the scaled volume is divided by the number of grid boxesNm of the

object. The individual shape Sm then corresponds to the ratio between the gray-shaded area and a cylinder with the same base and height.

The latter is depicted with the red-shaded rectangle.

TABLE 1. Overview of all metrics used.

Variable Metric

Amplitude metrics

M No. of objects

cc Cold cloud cover

hDTiC Cluster-mean BT

hDTiD Domain-mean BT

Location metrics

RD Mass distance

RC Compactness radius

SCAI Simple convective aggregation index

Structure metrics

VC Volume

SC Shape
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where now the weights Wm for the different objects are

derived from the ratio between object-average and

cluster-average BT amplitude; that is,

W
m
5

N
m
hDTi

m

N
C
hDTi

C

, (9)

where NC denotes the total number of grid boxes in the

cluster. With this, two spatial measures can be defined.

The first, the mass distance RD, is related to the average

placement of the cloud cluster and is computed from the

distance between the cluster center XC and domain

center XD by

R
D
5 jX

C
2X

D
j . (10)

The second spatial measure, the compactness radius RC,

is an aggregation measure that originates from the sec-

ond part of the location component of SAL (see Wernli

et al. 2008). Here, the distances between the object

centers Xm and the total center of mass XC are

computed. Afterward, these distances are weighted with

Wm to obtain

R
C
5 �

M

m51

W
m
jX

m
2X

C
j . (11)

Thus, RC depicts the radius of a circle aroundXC, which

includes most of the mass (see Fig. 4). A scattered (more

compact) spatial distribution of the objects is given

when RC is large (small).

A spatial metric that includes information about the

amount and the average spatial extent of the cluster is

SCAI. It was introduced by Tobin et al. (2012). SCAI

depends on the total number of objects M and the pos-

sible distances between all objects. This dependence

might be compared to the compactness radius RC that

depends on the distances between each object and the

cluster center as well as the object size and amplitude

distribution due to the weighting function Wm. SCAI is

defined as

FIG. 4. Observed example scene from Fig. 1 presented to illustrate the considered metrics

that provide information about the spatial distribution of the field. The black border shows the

considered domain whose center is marked with a black cross. The colored areas are the

identified objects. Each yellow star depicts the center of mass of the respective object, whereas

the red starmarks the center of mass of thewhole cluster. The radii of the shown circles indicate

different metrics for the spatial distribution: blue, mass distance; black, half of order-zero di-

ameter; and red, compactness radius.
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SCAI5
M

M
max

3
R

0

L
3 1000. (12)

Here, R0 denotes the so-called order-zero diameter, the

geometric mean of all possible distances between the

objects. In Fig. 4, R0 is illustrated as a black circle.

Furthermore, SCAI depends on the characteristic do-

main length L and potential maximum number of ob-

jects Mmax. We define L as the area of our fixed domain

divided by the longest possible distance within the do-

main. These domain-specific values are ND ’ 23 105,

L5 871:4 km, and Mmax 5 1898, where the latter value

takes the minimum object size of 20 km into account.

SCAI is large (small) for a scattered (more aggregated)

spatial distribution of the objects.

3) STRUCTURE

We define the cluster volumeVC and the cluster shape

SC as weighted averages over the individual object vol-

ume and shape values. The calculation is done similar to

Eq. (8) and is not stated separately. Please keep in mind

that this averaging strategy gives a higher weight to the

volume and shape of the larger objects.

4. Distributional characteristics

In the following, the overall distribution of the pro-

posed object-based metrics is analyzed. We especially

show how a direct comparison of observed and simu-

lated distributions helps to isolate specific deficits of

cloud forecasts.

a. Comparison between observations and simulations

Figure 5 shows box plots of the frequency distribu-

tions for the set of metrics. For clarity, and because the

forecast distributions are very similar, only one model

run (COSMO-DE 0600 UTC) is depicted. It can be seen

that the forecasts exhibit a systematic and significant

overestimation in six out of nine metrics.We applied the

so-called two-sample Kolmogorov–Smirnov test (see,

e.g., Wilks 2011) to determine if the observations and

forecasts share the same empirical cumulative distribu-

tion function. As the time series of the metrics show

significant serial correlation, we incorporated the ef-

fective degrees of freedom in the distribution tests. The

estimates are based on the autocorrelation behavior for

each metric (see section 5a for more information on

signal decomposition). The effective sample size is typ-

ically found to be a factor 3–6 smaller than the actual

sample size.

For the object number and cold cloud cover (Figs. 5a,b),

the observed distributions show a median of 19 ob-

jects and extrema between 1 and 60 objects. These

values cover a domain fraction from 0.2% up to 36%

with a median of 11%. For both metrics, the model ex-

hibits not only higher values but also a wider range. The

interquartile range (IQR) of the difference between

forecasts and observations lies between 2 and 15 objects

for the number of objects, and from 1% to 10% for cloud

cover. This overestimation may correspond to more

convective cells and/or to a more peaked structure of

high clouds. As indicated by the higher values in the

cloud fraction, the COSMO-DE forecasts considered

strongly overestimate the presence of high clouds, which

is in agreement with earlier studies (Böhme et al. 2011;

Eikenberg et al. 2015).

The relations between the frequency distributions of

domain-mean BT amplitude (Fig. 5c) for observations

and forecasts are similar to those of the cold cloud cover.

In the observations, the IQR lies between 0.6 and 1.9K,

whereas in the model, this range extends from 1.0 to

2.6K. Extrema reach up to 5.1K in both distributions.

Typical amplitude differences between COSMO-DE

and SEVIRI are in the range of 0.0–1.1K. To distin-

guish the effects of cloud cover and average cloud-top

temperature excess on the amplitude metric, we con-

sider the cluster-mean BT amplitude in Fig. 5d. It can be

seen that both distributions are centered around a me-

dian hDTiC of 9.6 and 9.9K for the observations and

model forecasts, respectively. However, the modeled

distribution is narrower, which shows that the forecasts

fail to reproduce the observational variability in cloud-

top temperature.

To address the question of how the objects are spa-

tially distributed in the simulations and observations,

three metrics are investigated. First, the compactness

radius is shown in Fig. 5e. The typical radius RC that

encloses the majority of the mass is around 300km for

the observations, as well as for the forecasts. The fore-

casted distribution of the compactness radius is slightly

shifted toward higher values, probably due to the over-

estimate in cloud cover. Therefore, a larger amount of

mass has to be covered. Differences in RC between the

COSMO-DE and SEVIRI observations range from238

to 111 km and can also be caused by a more scattered

spatial object distribution within the model. Negative

distances herein represent situations in which the fore-

casted objects are spatially more aggregated than the

objects within the observations. For the mass distance

(Fig. 5f), the forecasts show a slight underestimation,

with a median of 245km instead of 266 km. Moreover,

the IQRs of the differences between both distributions

range from 280 to 61km. The lower values indicate a

more widespread object cluster in the model. Forecast

extreme values reach up to a distance of 643 km,

whereas for the observations, they go up to 790 km.
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These extremes represent clusters of a few cells near the

edges or corners of the domain, since the longest dis-

tance between the domain center and a corner is 862 km.

The last spatial metric is SCAI (Fig. 5g). The SCAI

distribution of the model forecasts and the observations

shows a similar pattern for this metric as for the object

number. The median is shifted from 5.27 to 8.24, and in

addition the IQR is wider in the forecasts. If SCAI is, on

the one hand, interpreted as an aggregation measure,

the analysis suggests that the objects are more scattered

in COSMO-DE compared to the SEVIRI observations.

On the other hand, we already saw that the over-

estimation of the object number seems to be coupled to

the bias in cold cloud cover, which is problematic for the

FIG. 5. Boxplots of frequency distributions of (a) object number, (b) cold cloud cover, (c) domain-average BT amplitude, (d) cluster-

mean BT amplitude, (e) compactness radius, (f) mass distance, (g) SCAI, (h) volume, and (i) shape. Red boxes depict the observed

frequency distribution whereas the green boxes show the predicted distribution of COSMO-DE 0600 UTC. The bottom (top) lines

represent the 25th (75th) percentiles, and the box-center lines the median. Whiskers span 2.5 times the interquartile range and black

crosses indicate outliers. A star behind the panel title marks distributions that are different at the 5% significance level.

AUGUST 2017 REMPEL ET AL . 3169



assessment of the simulated aggregation state. Furthermore,

a higher value of SCAI can arise for different reasons,

either as a result of a smaller number of objects that are

far apart, or a larger number of objects that are clus-

tered together. Moreover, the order-zero diameter R0

approaches a constant value for a sufficiently large

number of objects.

The last two metrics consider the average structure of

the objects. For this, first, the volume VC is shown in

Fig. 5h, which is a combination of object sizes and cloud

shapes. We find a large overestimation of forecast VC.

The median is shifted to larger values, and also the IQR

is wider than in the observations. The overestimation of

volume is caused by two effects. First, because of the

overestimation of cloud cover, the average object size is

too large. This effect is not compensated by the simul-

taneous increase in object number. Second, the forecasts

underestimate the maximum DTi values of each object

(i.e., the intensity of the convective cores). This effect is

identified by the consideration of the average cluster

shape SC, which is the average ratio between the mean

and maximum DTi values within each object. In Fig. 5i,

the IQR extends from 0.42 to 0.51 in the observations. In

contrast, the forecasts exhibit an IQR that ranges from

0.47 to 0.55. Both distributions show extreme values

above 0.68, which indicate very flat objects. However,

the model reveals only a few values below 0.37, which

indicate nearly conically shaped objects.

In general, this analysis shows that the two amplitude

and structure metrics—domain-average BT amplitude

hDTiD and volume VC—which are components of the

SAL scoring method, are both sensitive to biases in the

amount of cloud cover. The overestimation of fore-

casted cc is hence penalized twice in SAL, which is an

undesirable behavior for the evaluation of cloud

forecasts.

b. Interdependencies between metrics

There are several simple interdependencies between

the considered metrics that arise from the construction

of composite metrics as products and ratios of base

metrics. Obviously, the term composite or base metric is

somewhat arbitrary and depends on the viewpoint. Ig-

noring higher-order terms, the variance of a product can

be decomposed into the individual variance contribu-

tions of its components and the covariance between

them. This decomposition is now applied to the domain-

average BT amplitude, which is approximately the

product of the cloud cover and the cluster-mean BT

amplitude. For observations and forecasts, respectively,

hDTiD has normalized variances of 0.5 and 0.34. Around

70% of these values are found to arise from variability

in cloud cover, which is consistent in forecasts and

observations. In the observations, the remaining 30% of

the hDTiD variability results equally from the variability

in hDTiC and the covariability between hDTiC and cc. In

the forecasts, the hDTiC variability is however a factor of

2 smaller than the covariability between hDTiC and cc.

Another composite metric is SCAI. The aggregation

index achieves normalized variances of 0.33 and 0.22 for

the observations and forecasts, respectively. Eighty (70)

percent of the variability in SCAI can be attributed to

the variability in the object number M for the observa-

tions (forecasts). The remainder is again approximately

equally distributed over the variability in geometric

object distance R0 and the covariability between M and

R0. Hence, if the forecasts, as observed here, produce

too many objects, the forecasted larger values of SCAI

do not have to be indicative of a less aggregated

model state.

Figure 6 presents the joint occurrence frequencies of

the metrics cc, hDTiC, RC, SCAI, and SC. In general, the

joint distributions show a large scatter. Larger values of

SCAI are obtained for larger values of cc and RC. In

addition, there is a strong dependence between hDTiC
and SC, with clusters of larger BT amplitude leading to a

flatter shape. Besides the previously noted biases, there

is no obvious mismatch between the observations and

the forecasts with regard to the interdependency of

metrics.

5. Temporal behavior

a. Variance decomposition

Cold clouds and their associated characteristics can

exhibit variations on diurnal to day-to-day time scales

depending on the external synoptic forcing. Hence,

evaluating the temporal behavior of cold cloud metrics

can help to identify deficits in internal transformation

processes, for instance microphysical conversion rates,

in response to these external forcings. In the following,

we study the variability of the proposed object-based

metrics on different time scales and decompose them

into daily mean, average diurnal, and residual intraday

signals. The dailymean values are obtained by averaging

the hourly time series in the interval between 0600 and

1800 UTC, thus representing typical daytime values. In

total, 59 daily average values result for the chosen set of

case days. The distributions of daily mean values of cc,

hDTiC, RC, SCAI, and SC are shown in Fig. 6. The dis-

tributions of daily mean values present similar charac-

teristics compared to the full distributions. The most

probable daily mean values are consistently over-

estimated by the forecasts. In general, the missing ex-

treme values lead to higher peaks in the central parts of
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the distributions. One special case is the forecasted cc

distribution, for which the daily mean density function

already matches its full counterpart quite closely.

We furthermore consider the different contributions

to the intraday variability. Therefore, the daily average

values are subtracted from the time series in a first step.

Thereafter, an average diurnal signal is calculated and

subtracted by aggregating and averaging values at the

same time of day. A residual time series results that

includes all the variability that is not explained by day-

to-day or typical diurnal variations. In the following, we

compare the forecast to the observed variance for dif-

ferent components of the time series of the metrics. All

variance values have been normalized by the full

FIG. 6. Scatterplots of the joint distribution of two metrics. From left to right and from top to bottom the following variables are shown:

cloud cover, cluster-meanBT amplitude, compactness radius, SCAI, and shape (red for observation and green for COSMO-DE 0600UTC

simulations). The diagonal shows the probability density functions of total (solid lines) and daily mean values (dashed lines) for the

different parameters in arbitrary units. The scatterplots above the diagonal have their counterparts at transposed positions below the

diagonal, however, in reversed plotting order, i.e., observations have been plotted on top of the simulations.
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observed variance and are listed in Table 2. The variance

components have been tested for the significance of

their difference using the so-called Brown–Forsythe

test, which scores the absolute deviations of the differ-

ent time series (Brown and Forsythe 1974). In addition,

the residual intraday time series have been examined for

serial correlations. We have found decorrelation lengths

between 3 and 6h depending on the metric considered

and thereafter decided to subsample the residual time

series in 6-h intervals before the application of the sig-

nificance test. The observed variance of cloud cover is to

58% attributable to day-to-day fluctuations. The re-

maining fractions are nearly equally governed by the

average diurnal behavior and the residual intraday

variability. The forecasted cloud cover, however, pos-

sesses more than twice the observed day-to-day vari-

ability and furthermore significantly underestimates the

concurrent diurnal signal. Other significant deficits of

forecast metrics are the missing intradaily variability of

hDTiC, the overestimation of residual intraday variance

of SCAI, and a too small diurnal cycle signal in the

forecasts of shape properties. From the above analysis, it

becomes apparent that especially the correct represen-

tation of the diurnal cycle component is challenging for

the model.

b. Diurnal cycles

In the remaining section, we shed more light on the

diurnal cycle of the five observed and forecasted met-

rics: cold cloud cover, cluster-mean BT, compactness

radius, SCAI, and shape. The temporal evolution is

analyzed and discussed separately for three different

weather regimes.

1) SOUTHWESTERLY

The time series in general can be split up into three

periods. The morning hours are associated with a

cloud-dissipating phase, which is followed by a period

of developing convection. Afterward, anvils of deep

convective clouds begin to merge, which lead to a

merging phase. The diurnal cycles of cloud properties

are depicted in Fig. 7 for the southwesterly flow re-

gime. The observed cluster-mean BT amplitude de-

creases until 1100 UTC during the cloud-dissipating

phase. In contrast, observed cold cloud cover remains

constant or even increases lightly. Furthermore, no-

ticeable increases in the compactness radius and SCAI

as well as shape can be identified. This implies that

residual clouds do not become smaller, but split into

more objects as a result of cloud-top warming. The

convective growth phase can be detected from 1100 to

1400 UTC, when all observational metrics increase.

Afterward, the compactness radius, SCAI, and shape

begin to decrease, whereas cold cloud cover and

cluster-mean BT continue to increase. The forecasts

exhibit good agreement with the observed temporal

evolution of the metrics. However, cold cloud cover

and cluster-mean BT show a lower diurnal amplitude.

The decrease in cluster-mean BT amplitude during

the morning as well as the subsequent increase during

the afternoon of cluster-mean BT is not well repre-

sented in the forecasts, which leads to negative biases

of up to 23K in COSMO-DE 1200 UTC. The com-

pactness radius and SCAI reveal a persistent over-

estimation due to a higher amount of objects. Further,

COSMO-DE shows a more distinct peak in the com-

pactness radius. Together with a small overestimation

during the morning hours, the forecasted shape metric

peaks around 2 h too early in the afternoon.

2) TROUGH OVER WESTERN EUROPE

In contrast to the previous situation, the observa-

tions for the trough over western Europe weather

regime show a generally higher cold cloud cover and

TABLE 2. Relative variance contributions (in%) for differentmetrics. The total observed variancewas chosen to normalize the variance

components related to day-to-day, average diurnal, and residual variability. The simulated variances have been tested against the ob-

served variance using the nonparametric Brown–Forsythe test. The residual time series was subsampled in 6-h intervals before the

variance test to remove effects from serial correlation. Boldface variance numbers indicate simulated variance contributions that are

significantly different from the observation at the 5% level.

Cold cloud cover Cluster-mean BT

Compactness

radius SCAI Shape

Statistic Obs

C-DE 0600

UTC Obs

C-DE 0600

UTC Obs

C-DE 0600

UTC Obs

C-DE 0600

UTC Obs

C-DE 0600

UTC

Relative day-to-day

variance

57.8 128.2 47.6 32.3 39.5 45.8 54.1 94.7 44.1 39.4

Relative diurnal-mean

variance

21.1 2.8 20.2 1.8 2.7 1.7 19.5 17.7 10.1 4.6

Relative residual

variance

23.6 21.5 31.5 9.8 59.2 46.8 25.2 34.8 45.7 32.0
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colder clouds (see Fig. 8). The observed cloud cover

exhibits a small decrease during the morning hours

and heavily increases around noon, resulting in a twice

as large cold cloud fraction during the evening.

Compactness radius and shape exhibit a decrease

during the morning, which may be associated with

merging effects, albeit, SCAI increases. The devel-

opment of convection starts from 0900 UTC onward,

when all metrics rise. The observed diurnal amplitude

is much smaller for this weather regime compared to

the southwesterly regime, with cold cloud cover being

one notable exception. The forecasts also reveal a

large positive bias for cold cloud cover, SCAI, and

shape during the morning hours, whereas the cluster-

mean BT and compactness radius are in a good

agreement with the observations. The model forecasts

more and smaller objects, which cover a larger area,

however, with a similar spatial distribution and cloud-

top temperature to the observations. From 0900 UTC

onward, compactness radius and SCAI increase. This

indicates new objects with a more spread out spatial

distribution, which implies developing convection.

However, the increase in compactness radius varies

among each COSMO-DE run. The forecasts reach

the peak in compactness radius and SCAI during

the afternoon, which is not in accordance with the

observations.

3) SOUTHERLY

For case days with a southerly flow pattern, Fig. 9

depicts the diurnal cycle of the metrics. It can be seen

that the observations show a distinct diurnal cycle. The

cloud dissipation period can be detected between 0600

and 0900 UTC. The median cold cloud cover decreases

as well as the cluster-mean BT amplitude. SCAI shows a

slight increase during themorning hours. Before 1200UTC,

observed cold cloud cover, BT amplitude, and SCAI

start to rise reaching maximal values during the late

afternoon or evening. In contrast, compactness radius

and shape exhibit a broad minimum between 0900 and

1500 UTC and strongly increase thereafter. Hence, all

observation-based metrics show a pronounced diurnal

cycle. In contrast, the forecasts are not able to capture

this general temporal behavior. The forecasted cloud

cover is heavily overestimated, and remains relatively

constant throughout the day (similar for the simulated

BT amplitude). Forecasted SCAI time series reach a

maximum around 1500 UTC, but also have a much too

small amplitude. The temporal evolution of the fore-

casted compactness radius and shape does not match

FIG. 7. Temporal evolution of five differentmetrics for 10 dayswith a southwesterly regime and for the time period from0600 to 1800UTC.

(a) Cold cloud cover, (b) cluster-mean BT, (c) compactness radius, (d) SCAI, and (e) shape. The green curves indicate themedian for four

COSMO-DE runs (0300, 0600, 0900, and 1200 UTC) while the red line shows the median of the observations. The envelopes denote the

interquartile range.

FIG. 8. Temporal evolution for 9 days during the trough over western Europe regime. Metrics and plot conventions are as in Fig. 7.
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with the observation. Hence, depending on the weather

situation, the forecasted diurnal behavior can exhibit

large deviations from the observation.

6. Sensitivities

In the following, two types of sensitivity experiments

that have been performed to assess possible weaknesses

of the considered object-based metrics are discussed.

First, as discussed by Senf and Deneke (2017), the cal-

culation of synthetic satellite images is affected by some

inherent uncertainties, which are caused by un-

constrained microphysical and optical properties of ice

and mixed-phase clouds. Resulting changes in infrared

cloud emissivity lead to variations in window-channel

BTs on the order of 2–4K. To quantify this effect, the

complete analysis presented so far has been repeated for

the operationally available synthetic satellite imagery

that has a less consistent formulation of cirrus particle

size and subgrid-fractional cloud coverage. As a result,

cold cloud cover remains significantly overestimated,

with a median relative bias with respect to the obser-

vation increasing from 49% for the revised SynSat

scheme to 91% for the operational SynSat scheme.

Other parameters that are related to cc like domain-

meanBT amplitude hDTiD and volumeVC show an even

more pronounced increase in the positive bias. The

overestimation of the total number of objects and SCAI,

however, decreases from 50% to around 30%. The de-

composition of variance into different contributions

remains similar for the operational SynSat. The main

deficits again appear in the day-to-day variance of cloud

cover, which is even more strongly overestimated, and

the average diurnal component remains too weak. Ad-

ditional differences are related to the underestimation

of subdaily variance of cluster-mean BT amplitude and

shape in the cold cloud cluster.

The second sensitivity experiment assesses the sensi-

tivity of the object identification technique for different

threshold choices. It has been intensively discussed in

Weniger and Friederichs (2016) that the SAL location

and structure parameters can become unstable for cer-

tain parameter values. The chosen threshold for image

segmentation is one of the most sensitive parameters. In

contrast to our study, Weniger and Friederichs (2016)

applied their object identification algorithm to geosta-

tionary water vapor imagery during winter conditions,

and defined patches of moister upper-level air as targets

for their object-based investigations. In general, we ar-

gue here that convective clouds occurring during the

summertime seen by window-channel observations are

closer to the subjective notion of distinct objects, at least

in comparison to the more continuous moist air struc-

tures. We thus expect that the sensitivity of our object

properties to changes in parameters is less pronounced.

Nevertheless, we repeatedly derived the time series of

object-based metrics for different BT thresholds in the

wide range between 210 and 270K. Each time series was

again decomposed into daily average, average diurnal,

and residual signals. In a further analysis step, the linear

correlation between the time series components at the

various BT thresholds with that of the threshold of 240K

was calculated. The correlation decreases mono-

tonically as a function of the difference of the threshold

and 240K. This loss of correlation indicates a decrease in

the coherence between the two signals. The faster the

correlation decays, the more sensitive the considered

metric is to changes in the threshold.We determined the

e-folding values for two threshold ranges above and

below 240K. Figure 10a illustrates that there is a broad

corridor between 230 and 250K in which the daily mean

and the higher-frequency residual component remain

strongly correlated with the base setup, respectively. In

general, setting the threshold to a colder BT by a certain

amount has a larger impact than vice versa. This is also

expected, as more and more convective cloud tops dis-

appear for colder threshold values. The most sensitive

parameters are the compactness radius RC, the aggre-

gation index SCAI, and the cluster shape SC. We fur-

thermore analyzed the impact of the threshold choice on

FIG. 9. Temporal evolution for 9 days during a southerly regime. Metrics and plot conventions are as in Fig. 7.
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the day-to-day bias between forecasts and observations.

Therefore, we calculated the optimal threshold that

minimizes the bias between forecast and observed

metrics. The threshold adjustment was only performed

for the forecasts and was done for each of the case days

independently. The resulting distributions of optimal

forecast thresholds are shown in Fig. 10b. Biases in cc

and hDTiC can be compensated by much smaller

changes of the threshold compared to the changes for

RC, SCAI, and SC. The significant spread of optimal

thresholds for the latter threemetrics again suggests that

the metrics are more sensitive to and are influenced less

systematically by the threshold choice. In addition, if the

spread approaches the e-folding values, no meaningful

coherence between forecasts and observations is

expected.

7. Conclusions

In this study, object-based metrics are investigated as

part of an evaluation of forecasts of cold cloud charac-

teristics with infrared geostationary satellite observa-

tions. For this purpose, operational forecasts of the

German Weather Service’s COSMO-DE model as well

as Meteosat SEVIRI observations have been examined.

The convection-permitting cloud forecasts have been

transferred into synthetic brightness temperatures using

radiative transfer calculations with the RTTOV model

utilizing a revised SynSat scheme, in order to facilitate a

direct comparison with Meteosat observations. The

identification of individual cloud objects in the 10.8-mm

brightness temperature fields is based on an image seg-

mentation technique that uses a threshold of 240K and

identifies connected areas of colder brightness temper-

atures. Several object-based metrics have been defined

on the overall cluster, which comprise the total set of

cloud objects. Similar to the SAL technique that was

developed to evaluate precipitation forecasts in river

catchments, the proposed metrics were sorted into three

categories related to (i) the amplitude or amount, (ii) the

location or spatial arrangement, and (iii) the structure of

the cluster. In particular, no direct match between in-

dividual objects was required in the statistical analysis.

A dataset of 59 case days with active deep moist con-

vection spanning the summer-half years between 2012

and 2014 has been collected, and forecasts initialized at

four times (0300, 0600, 0900, and 1200 UTC) were

evaluated. We have applied a temporal decomposition

of the metric time series into different components re-

lated to the daily mean day, average diurnal cycle, and

residual variability. Furthermore, diurnal cycles of sev-

eral metrics between 0600 and 1800 UTC have been

FIG. 10. Visualization of threshold sensitivity of five metrics: cloud cover, cluster-mean BT amplitude, com-

pactness radius, SCAI, and shape. (a) The dark blue bars indicate the range at which the correlation between the

daily average time series derived with a certain threshold and the one with 240K falls below the e-folding value.

Across the e-folding values derived from observations and the simulations, the one closest to the base threshold of

240K was chosen. Light blue bars indicate the same, but for the residual time series component. If no blue bars

appear, then the e-folding value is outside the plotting range. (b) The green bars show the interquartile range of

optimal threshold values that minimize the daily bias between observations and simulations. From left to right, the

COSMO-DE initialization times increase from 0300, 0600, 0900, to 1200 UTC (light to dark green). The median is

also indicated by black horizontal lines within the green boxes.
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analyzed with regard to their temporal behavior and

ability to distinguish different weather regimes.

The distributional characteristics of different object-

based metrics have been analyzed for and compared

between observations and forecasts. It is shown that the

forecasts significantly overestimate six out of nine met-

rics. The affected metrics are either related to the am-

plitude and amount of simulated cold clouds, such as

cold cloud cover and domain-mean BT amplitude, or to

the structure of the cloud cluster, such as volume or

shape. Because of its close connection to the total object

number, the aggregation measure SCAI is also over-

estimated. However, we question whether this is in fact

due to a less aggregated convection state within the

forecasts, but present evidence that this is due to an

overestimation of the amount of cloud itself. This is

further supported by the analysis of the variability of

SCAI, which shows that around 80% of the variability is

determined by the variability in the object number,

whereas only the remaining smaller part is influenced by

the spatial arrangement of the cold clouds. In addition, it

is discussed that a general overestimate of cloud cover

influences the domain-mean BT as an amplitude metric

and the volume as a structure metric in a similar way.

Such a model deficit is therefore penalized twice, if both

are combined into a composite metric such as SAL,

which might not be desirable for the purposes of eval-

uating cloud forecasts. In addition, we have studied the

joint behavior of the metrics cloud cover, cluster-mean

BT amplitude, compactness radius, SCAI, and shape. In

general, the joint distributions between two metrics

show a large scatter, but are in good agreement for ob-

servations and forecasts, besides the already mentioned

biases of the individual metrics. Systematically larger

values of SCAI are found for larger values of cloud

cover and compactness radius. In addition, a strong de-

pendence between cluster-mean BT amplitude and

cluster shape is identified, leading to the situation where

clusters with higher average BT values possess a

flatter shape.

The temporal behavior of the observed and forecasted

cloud cover, cluster-mean BT amplitude, compactness

radius, SCAI, and shape is thoroughly analyzed. The

cloud cover variability for daily means is significantly

overestimated by the forecasts, whereas the opposite is

true for the average diurnal cycle. Further model

weaknesses are related to the underrepresentation of

intradaily variability in cluster-mean BT amplitude and

shape. The average diurnal cycle is additionally pre-

sented for the three most frequent weather regimes

among the case days. For a southwesterly regime, the

forecasts exhibit the most convincing agreement with

the observations. However, the observed late afternoon

increases in cloud cover, cluster-mean BT amplitude,

and SCAI are underestimated. The agreement de-

teriorates for the other two flow regimes: trough over

western Europe and southerly. For both regimes, the

observed cloud cover shows a pronounced diurnal cycle

with a doubling of the cloud amount from morning to

late afternoon. The forecasts significantly overestimate

the cloud cover in the morning hours, therefore leading

to amuch smaller amplitude of the diurnal cycle in cloud

cover. Similarly, deficits appear for the diurnal behavior

of the cluster-mean BT amplitude and shape. This il-

lustrates that both aspects, the change in the areal ex-

tent of convective clouds as well as the change and

magnitude of convective cloud-top temperature, are

inherently problematic for the considered convection-

permitting forecasts.

The sensitivity of the proposed object-based metrics

to changes in the satellite forward operator as well as to

changes to the threshold used in the object identification

has been investigated. First, we have reexamined the

operationally available synthetic imagery that can de-

viate from our revised SynSat scheme by several degrees

kelvin. The analysis shows an even more pronounced

overestimation of cold cloud cover. Deficits in the

intradaily variability of cloud cover, cluster-mean BT

amplitude, and shape remain significant for the opera-

tional synthetic imagery. Second, we have assessed the

temporal coherence between metric time series com-

ponents derived with a standard threshold of 240K,

and a threshold shifted to either smaller or larger BT

values. In general, we find that threshold changes be-

tween 230 and 250K do not lead to a loss of temporal

coherence, indicating a certain level of robustness of our

results to threshold changes. Decreasing the threshold

toward colder BTs results in higher sensitivity compared

to an increase. We furthermore analyzed day-to-day

threshold adjustments to minimize the bias between the

observed and forecast metrics. For cloud cover and

cluster-mean BT amplitude, these bias adjustments

show smaller spread compared to compactness radius,

SCAI, and shape, which illustrates that the latter mea-

sures are more uncertain, and are also harder to con-

strain by the observations.

The current study utilizes measurements of cloud-

affected infrared radiation from only a single spectral

channel, the 10.8-mm window channel. An obvious ex-

tension of the current approach for object identification

is the application ofmultispectral methods (e.g., Derrien

and Le Gléau 2005) to distinguish transparent or semi-

transparent cirrus clouds from deep convective cores,

which we will pursue in the future. This would allow

for a more specific and targeted evaluation of cloud

properties depending on the predefined cloud types. We
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additionally emphasize here that a joint evaluation of

cloud and precipitation characteristics can have the

potential to further increase our understanding of cur-

rent state-of-the-art model deficits and might illuminate

pathways of future improvements of simulating the ef-

fects of deep convective clouds for the climate system.
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