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Abstract:

This thesis is devoted to the experimental quantitative characterization of the shape and

orientation distribution of ice particles in clouds. The characterization is based on measured

and modeled elevation dependencies of the polarimetric parameters differential reflectivity

and correlation coefficient. The polarimetric data is obtained using a newly developed 35-

GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities.

The full procedure chain of the technical implementation and the realization of the setup

of the hybrid-mode cloud radar for the shape determination are presented. This includes

the description of phase adjustments in the transmitting paths, the introduction of the

general data processing scheme, correction of the data for the differences of amplifications

and electrical path lengths in the transmitting and receiving channels, the rotation of the

polarization basis by 45◦, the correction of antenna effects on polarimetric measurements, the

determination of spectral polarimetric variables, and the formulation of a scheme to increase

the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-

scattering models assuming the spheroidal representation of cloud scatterers. The parameters

retrieved from the model are polarizability ratio and degree of orientation, which can be

assigned to certain particle orientations and shapes.

In the thesis the first quantitative estimations of ice particle shape at the top of liquid-

topped clouds are presented. Analyzed ice particles were formed in the presence of super-

cooled water and in the temperature range from −20 ◦C to −3 ◦C. The estimation is based

on polarizability ratios of ice particles measured by the MIRA-35 with hybrid polarimetric

configuration, manufactured by METEK GmbH. For the study, 22 cases observed during the

ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques)

field campaign were used. Polarizability ratios retrieved for cloud layers with cloud-top tem-

peratures of about −5, −8, −15, and −20 ◦C were 1.6, 0.9, 0.6, and 0.9, respectively. Such

values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respec-

tively. Data from a free-fall chamber were used for the comparison. A good agreement of

detected shapes with well-known shape–temperature dependencies observed in laboratories

was found.
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Chapter 1

Introduction

Clouds are one of the main atmospheric components and play an essential role in the global

climate system. With an albedo of up to 80 % [Mazin and Khrgian, 1989; Liu et al., 2011]

clouds scatter a large part of the solar radiation back to the space. On the other hand, clouds

contribute to the greenhouse effect by reflecting back the long-wave radiation emitted by the

Earth’s surface. Covering on average 75 % of the sky [Wylie et al., 2005], clouds influence the

global radiation budget significantly. The difference between radiation budgets at the Earth

surface in cloud and cloud-free conditions in the short-wave and long-wave regions is found

to be −46.6 W m−2 and 29.5 W m−2, respectively [Loeb et al., 2009]. The microphysical

properties of clouds are in addition susceptible to variations in the properties of aerosol

particles which are required as nuclei of cloud droplets and ice crystals. Because aerosol

conditions are changed by human activity, also anthropogenic effects on cloud properties are

likely. Recent investigations have shown that the effective anthropogenic radiative forcing at

the Earth surface induced by aerosol-cloud interaction is in the range from −1.2 to 0 W m−2

[Flato et al., 2013]. The negative values indicate that anthropogenic effects of aerosols on

clouds cause radiative cooling of the atmosphere. Unfortunately, a low confidence level of

this estimation limits our understanding of the exact impact of clouds and aerosol-cloud

interaction on the climate.

Water and energy transportation within the global hydrological cycle cannot function

without clouds [Chahine, 1992]. Cloud systems are mainly sustained by moisture from the

oceans and produce liquid and solid precipitation over land. Based on long-term gauge and

satellite observations the annual mean precipitation rate over the last several decades was

found to be about 2.6 mm d−1 [Xie and Arkin, 1997; Chen et al., 2002; Adler et al., 2003].

In other words, about 1.3 × 1012 kg of water precipitates from clouds every day, ∼23 %

of that precipitation amount occurs over land. This amount of water refreshes ice glaciers

and ground water, which are source not only of water for vegetation and population, but

also for hydroelectric power plants. On the other hand, spatial and temporal variability in
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precipitation amounts can cause hazards such as floods, droughts, and storms. Thus, an

accurate characterization of cloud formation and development can improve predictability of

severe weather events [Tippett et al., 2015] and a quantification of future water resources

and hydrological extremes for agriculture [Piras et al., 2014] especially in the face of global

climate change.

Satellite-based observations from 2005 to 2011 showed that the majority of liquid precip-

itation over land is sourced from cold clouds [Mülmenstädt et al., 2015], i.e. the formation

of raindrops includes the ice phase. Moreover, the authors also showed that in mid-latitudes

30 to 50 % of cold clouds producing liquid precipitation are mixed-phase, i.e. they contain

coexisting liquid water droplets and ice crystals. Such a coexistence has been also often

registered in numerous in situ and remote observations of the atmosphere [Rauber , 1987;

Cober et al., 2001a; Mazin, 2006; De Boer et al., 2009; Shupe, 2011]. In general, precipi-

tation produced by mixed-phase clouds is more intense in comparison with the one formed

in purely liquid clouds [Niu and Li , 2012]. This phenomenon is the result of the Wegener-

Bergeron-Findeisen process [Findeisen et al., 2015] which describes the efficient growth of ice

crystals to precipitation-sized hydrometeors in air masses that are unsaturated with respect

to liquid water but saturated with respect to ice. Besides their relevance for precipitation

formation, the long-lasting nature of mixed-phase clouds impacts the radiative budget and

the thermodynamic structure of the atmosphere [Sun and Shine, 1994, 1995; McFarquhar

and Cober , 2004; Yoshida and Asano, 2005]. In addition, the presence of supercooled liquid

water in clouds is a serious hazard for short-haul regional aircraft [Cober et al., 2001b] and

unmanned aerial vehicles [Siquig , 1990; Curry et al., 2004; Kankiewicz et al., 2005]. Sand

et al. [1984] showed the influence of supercooled liquid water on the aircraft performance,

which can be considerably reduced because of increased drag and decreased lift. Finally,

mixed-phase cloud layers can hamper military missions such as a target’s detection, usage of

opto-electronic sensors and weapons, refueling and strike missions [Fleishauer et al., 2002;

Kankiewicz et al., 2005]. In spite of the importance of mixed-phase clouds, they are still

understudied in comparison to single-phase clouds [Luke et al., 2010; Zhang et al., 2010],

because of the respectively large number of processes occurring in mixed-phase clouds [Mor-

rison et al., 2012].

Existing models, based on the Wegener-Bergeron-Findeisen mechanism [Korolev and

Mazin, 2003], show the high instability of supercooled liquid layers. Modeling results indi-

cate that due to their instability mixed-phase clouds can completely glaciate within several

hours. In contrast, observations have shown that mixed-phase clouds can persist in the at-

mosphere for days up to a week [Zuidema et al., 2005; Shupe, 2011; Morrison et al., 2012;

Westbrook and Illingworth, 2013]. For a better understanding of such large-scale processes it

is necessary to investigate the mechanisms that take place in mixed-phase clouds at smaller

temporal and spatial scales. Accurate modeling of these mechanisms requires detailed infor-
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mation on cloud particle size, number concentration, shape, and phase [McFarquhar et al.,

2013]. Precise data in convective precipitating mixed-phase cloud systems, which have a

strong impact on the global precipitation and radiation budgets, is often unavailable. Air-

borne in situ measurements in such cloud systems are limited because of dangerous icing

conditions for aircraft and the instrumentation carried aboard. Remote-sensing observations

are hampered by propagation effects and signal attenuation in particular. Moreover, inter-

pretation of available data sets is complicated because of numerous processes occurring in

convective precipitating cells. For instance, the number of transition processes between water

vapor, liquid, and ice can exceed 25 [Tao and Moncrieff , 2009]. Therefore, thin mixed-phase

clouds with a single supercooled liquid layer at the top and ice virgae below are of special

interest [Wang et al., 2004; Smith et al., 2009]. Such clouds have less complex microphysical

and dynamical properties [Fleishauer et al., 2002; Ansmann et al., 2009; Zhang et al., 2012]

and, thus, are considered as a key to obtain a comprehensive picture of the formation of

pristine ice crystals under ambient conditions. The knowledge about the pristine ice crystal

properties will allow for an accurate characterization of subsequent processes such as ice

multiplication and precipitation formation.

Ground-based remote sensing has shown a large potential for improving the understand-

ing of the lifecycle of thin mixed-phase clouds [Hogan et al., 2003; Ansmann et al., 2009;

De Boer et al., 2009; Delanoë and Hogan, 2010; Kanitz et al., 2011; Westbrook and Illing-

worth, 2013]. Even though microphysical retrieval techniques based on ground-based remote

observations are a valuable source of information for studying mixed-phase clouds, further

investigations are required in order to increase the accuracy of these retrievals. One im-

portant and yet barely explored parameter is the predominant shape of ice crystals within

a population. Estimates of ice mass, area, or number concentration require knowledge of

particle shape [Westbrook and Heymsfield , 2011; Delanoë et al., 2014]. De Boer et al. [2009]

considered the shape of ice particles to be the largest source of errors in existing size and

number concentration retrievals that are based on combined lidar and radar vertical obser-

vations. For instance, the authors reported that the assumed ice particle shape can cause

changes in the calculated effective size and number concentration of up to 200 µm and

90 l−1, respectively. In existing microphysical models an accurate representation of ice par-

ticle shape plays an important role as the shape parameterizes size–mass–terminal velocity

relations of ice crystals [Mitchell , 1996; Delanoë et al., 2014], the depositional growth rate

[Westbrook and Heymsfield , 2011], and scattering properties of the ice crystals [Delanoë and

Hogan, 2010]. Moreover, knowledge of the ice particles’ shape provides a potential for the

retrieval of the particle number size distribution. Such a retrieval can be based on cloud

radar Doppler spectra and known relations between size and terminal velocity for different

particle habits [Mitchell , 1996]. Mace et al. [2002] presented a retrieval of the number size

distribution based on the moments of Doppler spectra obtained with a 35-GHz cloud radar.
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The authors estimated the uncertainties of the retrieval associated with the ice particle habit

and found those to be 60 % and 40 % in ice water content (IWC) and median ice particle

size, respectively. Continuous information about the number size distribution of ice parti-

cles can later on be helpful for a better understanding and characterization of the efficiency

of heterogeneous ice formation, which currently is subject of numerous studies [Hoose and

Möhler , 2012; Murray et al., 2012; Phillips et al., 2013; Ladino Moreno et al., 2013; DeMott

et al., 2015].

Cloud radar is one of the most promising remote-sensing instruments for particle shape

determination. Recent investigations of Kneifel et al. [2011] and Kneifel et al. [2015] show

the potential of the multi-frequency approach in the separation of snow particle habits when

Mie scattering is present. According to Kneifel et al. [2015], the approach is most effective for

a median volume diameter exceeding 2 mm. Often, nevertheless, characterization of smaller

ice crystals is required. For example, in thin mid-level mixed-phase clouds the typical size

of ice crystals is about an order of magnitude lower, hampering the applicability of the

multi-frequency approach.

Another powerful tool for the shape estimation of cloud particles is cloud-radar polarime-

try. The polarimetric approach is known to be effective in the case when cloud particles can

be approximated using the well-known spheroidal model [Holt , 1984]. Matrosov [1991a] pre-

sented theoretical considerations about the potential of polarimetric cloud radars for the

shape classification of ice crystals. The author analyzed modeled elevation dependencies

of polarimetric products that could be measured with several polarimetric configurations.

Matrosov and Kropfli [1993], Matrosov et al. [2001], and Reinking et al. [2002] experimen-

tally evaluated the proposed polarimetric configurations that were emulated using rotatable

quarter- and/or half-wavelength phase plates. The plates were mounted into the waveguide

system of a ground-based Ka-band radar, operated by the Wave Propagation Laboratory of

the National Oceanic and Atmospheric Administration (NOAA). A number of studies present

polarimetric measurements of winter clouds taken by airborne [Galloway et al., 1997; Wolde

and Vali , 2001] and ground-based cloud radars [Pazmany et al., 1994; Lohmeier et al., 1997;

Reinking et al., 2002]. Often such measurements were compared with the microphysical

properties of the ice crystals observed in situ with aircraft or on ground. Despite the obser-

vational evidence that polarimetric variables are sensitive to the shape of particles, which was

confirmed by the above-mentioned studies, further investigations in this area are required to

realize an operational quantitative characterization of particle shape [Matrosov et al., 2012].

An approach to quantitatively obtain the particle shape and orientation from weather radar

observations of polarimetric parameters was, e.g., presented by Melnikov and Straka [2013],

but their retrieval has limitations in the discrimination between oblate and prolate particles.

Even though the potential of different polarimetric configurations for a detailed shape

retrieval of hydrometeors were evaluated in the above-mentioned studies, many cloud radars



5

are operated in simpler configurations. The widely used spaceborne 94-GHz cloud profiling

radar aboard the Cloudsat satellite has no polarization capabilities at all [Stephens et al.,

2008]. Other systems are operating in the depolarization mode (also known as polarization

diverse mode). In this mode the radar emits a wave with a certain constant polarization

state (usually linear or circular) and receives co-polarized and cross-polarized components of

the backscattered wave. This is, e.g., the case for the default setup of MIRA-35 [Görsdorf

et al., 2015] as well as the Ka-band Zenith-pointing Radar of the US Department of Energy

Atmospheric Radiation Measurement program. Normally, such radars provide only one po-

larimetric product – the depolarization ratio which is the ratio of the returned power in the

cross-polarized channel to the returned power in the co-polarized channel. If only the depo-

larization ratio is used to derive an estimate of ice particle shape, an assumption about the

distribution of ice crystal orientation has to be made as described by Matrosov et al. [2001].

Ryzhkov [2001] concluded that not only power relations but also the correlation between the

orthogonal components of the received wave should be analyzed for the characterization of

both shape and orientation distribution.

This work is devoted to the development of a novel polarimetric technique to quan-

titatively derive shape and orientation of particles as they are formed in thin stratiform

mixed-phase clouds. The available experience in the field of radar polarimetry was utilized

to implement a new polarimetric configuration into a 35-GHz cloud radar that is able to mea-

sure the spectral coherency matrix based on which a set of spectral polarimetric variables

can be obtained. The cloud radar performance was evaluated based on a dataset acquired

during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization

Techniques) field measurement campaign which took place at the Cabauw Experimental Site

for Atmospheric Research (CESAR), the Netherlands, in fall of 2014. Based on the ACCEPT

observations the capabilities of the cloud radar and the new polarimetric retrieval technique

to derive the shape and orientation of pristine ice crystals was evaluated against well-known

shape-temperature relationships for ice crystals grown in laboratories under ambient con-

ditions. A theoretical prospective presented in Chapter 2 covers basics of ice formation in

the presence of liquid water and gives an overview on the polarimetric approach for the

microphysical studies of ice particles. In the final part of Chapter 2 scientific questions to

be answered in the thesis are given based on the previous review. Chapters 3 and 4 are

devoted to the technical aspects of the cloud radar MIRA-35, including antenna pattern

measurements, technical implementation, and calibration. The retrieval technique for quan-

titative shape and orientation estimations is described in Chapter 5. The experimental part

of this study, covered in Chapters 5 and 6, is based on measurements with a newly devel-

oped 35-GHz cloud radar MIRA-35 with hybrid polarimetric configuration and the Leipzig

Aerosol and Cloud Remote Observations System (LACROS, Wandinger et al. [2012])) col-

lected during the ACCEPT field measurement campaign. A comparison of the parameters of
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ice crystals obtained from the polarimetric measurements with those from laboratory studies

is presented in Chapter 6. In Chapter 7 a summary, conclusions, and outlook are provided.

The majority of material presented within this work was published in Myagkov et al. [2015],

Myagkov et al. [2016a], and Myagkov et al. [2016b].
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Chapter 2

Formation and development of ice

particles: Laboratory studies and

remote observations

It is well-known that microphysical properties of ice particles are strongly defined by the

ambient conditions under which the crystals form and develop. A snowflake is regarded as a

“letter from the sky” in Nakaya [1954] since weather conditions are hidden in its morphology.

Undergoing different trajectories, ice crystals in the atmosphere experience diverse temper-

ature and humidity regimes. Thus, it is hard to find two crystals with the same structure,

although ice particles falling close together may have some apparent similarities [Nelson,

2008]. In order to better understand processes influencing the development of ice particles

in mixed-phase clouds it is necessary to know under which conditions ice crystals are formed

and grow. In the first part of this chapter basics on the formation and initial development

of ice crystals in mixed-phase clouds are considered. The second part presents a literature

review on the applicability of radar polarimetry for the estimation of microphysical proper-

ties of natural ice particles. In the third part of the chapter goals of the study and questions

to be answered within this thesis are given.

2.1 Heterogeneous ice formation in the atmosphere

Long-term in situ measurements have shown that about 80 % of mid-level clouds occur at

temperatures from −35 to 0 ◦C [Mazin, 2006]. Under such conditions cloud particles are

primarily formed via heterogeneous mechanisms. Heterogeneous formation is only possible

in the presence of aerosol particles which at certain environmental conditions can act either

as ice nucleating particles (INP, Vali et al. [2015]) or as cloud condensation nuclei (CCN) and

form ice crystals or liquid drops, respectively. The main fraction of CCN consists of relatively
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small (diameter ∼100 nm) salt and organic particles. The efficiency of CCN activation in an

aerosol population at a certain level of supersaturation with respect to liquid water is mainly

defined by the particle concentration. Analyzing a number of studies on CCN measurements

Andreae [2009] found that the amount of aerosols acting as CCN is about 10–60 % and 3–

50 % for maritime areas and continental zones, respectively. Due to a higher concentration

of aerosols over land the typical concentration of CCN over continental areas can be an

order of magnitude higher than over the ocean [Pruppacher and Klett , 1997, ch. 9]. Andreae

[2009] showed that values of CCN concentration at 0.4 % supersaturation for the marine

atmosphere vary from 2.3× 107 m−3 in remote regions to 1.7× 109 m−3 in polluted regions.

In the continental atmosphere CCN concentrations range from 9×107 m−3 to 9.1×109 m−3.

The ability of aerosol particles to activate the ice nucleation process or to initiate conden-

sation of liquid water at certain atmospheric conditions strongly depends on their size and

chemical composition. In general, particles acting as INP are large (diameter ∼1 µm), solid,

water-insoluble particles. The most efficient INP are mineral dust, metals, and biological

particles. Up to 50 % of INP consist of mineral dust [DeMott et al., 2003a; Baustian et al.,

2012], sourced from deserts in Africa, the Middle East, or Asia [Sassen, 2002; DeMott et al.,

2003b; Sassen et al., 2003; Richardson et al., 2007; Kamphus et al., 2010].

Size, concentration, and chemical composition of INP define the nucleation mechanism

and rate of ice formation in mixed-phase clouds. Based on long-term lidar observations in

different geographical locations Seifert et al. [2010] and Kanitz et al. [2011] report that the

fraction of ice-containing clouds is strongly dependent on aerosol properties. Vast reviews

of laboratory studies on ice nucleation by different types of aerosols were given by Baustian

et al. [2012], Hoose and Möhler [2012], and Ladino Moreno et al. [2013]. In general, INP

concentration increases exponentially with decreasing ambient temperature. At temperatures

from −25 to −10 ◦C the INP concentration is several orders of magnitude lower than the

concentration of CCN and typically ranges from 10 to 5× 105 m−3 [DeMott et al., 2010].

Beside concentrations of CCN and INP, atmospheric ambient conditions have a strong

impact on the microphysical properties of formed ice crystals. For example, laboratory

investigations by Matsuo and Fukuta [1987] showed differences between ice particles grown

at conditions close to ice saturation (IS) and water saturation (WS). The authors found

that liquid-dependent formation results in ice crystals having up to an order of magnitude

larger size and mass, and, therefore, faster sedimentation velocity. In addition, ambient

temperature defines the shape of formed ice particles. Figure 2.1 represents a comprehensive

morphological diagram of ice crystal habit as a function of temperature and humidity [Bailey

and Hallett , 2009]. At temperatures between −20 and 0 ◦C ice crystals have a primary

shape while at lower temperatures a mixture of different types of particles can occur. In the

single crystalline mode, the shape of ice particles formed at IS features in general similar

temperature dependencies as at WS, but the shape is less pronounced [Matsuo and Fukuta,
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Figure 2.1: Habit diagram for ice crystals at different formation conditions. The figure is adopted

from Bailey and Hallett [2009].

1987]. Mechanisms associated with the formation of ice crystal habits are addressed in

Sec. 2.2.

Formation of the ice phase in mixed-phase clouds can be strongly affected by the presence

of supercooled liquid water which enhances deposition growth and riming of ice particles,

as well as secondary ice production processes. In-situ and remote observations have shown

that supercooled drops form thin layers at the top and inside of mid-level clouds [Rauber

and Tokay , 1991; Verlinde et al., 2007; Luke et al., 2010; Morrison et al., 2012]. Based

on three weeks of measurements from two imaging probes carried by the Met Office C-130

Hercules research aircraft, Hogan et al. [2003] studied the liquid fraction within thin mixed-

phase clouds at temperatures from −23 to −7 ◦C. The authors reported liquid water content

(LWC) and effective radius of supercooled drops to be on the order of 0.05–0.1 g m−3 and

3–5 µm, respectively. Those obtained by Korolev et al. [2003] from long-term airborne

observations are 0.02–0.1 g m−3 and 15 µm, respectively. Even though indications of ice-

dependent freezing at mid-levels were reported by Sassen and Khvorostyanov [2008], the

majority of the ice crystals in mixed-phase clouds are formed heterogeneously within the

liquid layer [Ansmann et al., 2009; De Boer et al., 2011]. Westbrook and Illingworth [2011]

reported that about 95 % of ice particles at temperatures warmer than −20 ◦C originated
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from liquid water particles. The transition from the liquid phase to the ice phase and its

partitioning depends strongly on the environmental temperature and, as it was previously

mentioned, the properties of the available INP [DeMott et al., 2010; Hoose and Möhler , 2012;

Kanitz et al., 2011; Seifert et al., 2015]. Temperature, pressure, and humidity at which ice

crystals are formed also define their shape and apparent density, which in turn determine

the sedimentation velocity [Fukuta and Takahashi , 1999; Bailey and Hallett , 2009]. The

vertical and dynamical structure of a mixed-phase cloud furthermore determines the type

and intensity of ice multiplication processes whose occurrence are a prerequisite for the

formation of intensive precipitation [Hallett , 1974; Rangno and Hobbs, 2005; Seifert and

Beheng , 2006]. Korolev et al. [2007] analyzed 584 profiles of liquid water content measured

in situ. The authors found that the thickness of supercooled liquid layers in mixed-phase

clouds often exceeds 100 m. Having terminal velocities on the order of 10−1 m s−1 [Fukuta

and Takahashi , 1999], newly formed ice particles can grow under water saturation conditions

for several tens of minutes.

2.2 Laboratory investigations of ice crystal development

At atmospheric pressures and temperatures in the range from −80 to 0 ◦C bonded water

molecules are arranged into hexagonal structures (ice Ih) [Pruppacher and Klett , 1997, ch. 3].

Pristine ice crystals observed in situ in the atmosphere and grown in laboratories often have a

shape of hexagonal columns and plates or six-branched dendrites [Kampe et al., 1951; Fukuta,

1969; Lamb and Hobbs, 1971; Ryan et al., 1976; Keller and Hallett , 1982; Takahashi et al.,

1991; Bailey and Hallett , 2009; Castellano et al., 2014]. Therefore, pristine ice particles are

often represented by a hexagonal prism which has two basal and six prism faces. Basal and

prism faces are, using Miller-Bravais index, often denoted as {0001} and {1010}, respectively,

in above-cited literature. Throughout this thesis the shape of an ice crystal is characterized

by the axis ratio:

ξg =
c

a
, (2.1)

where a and c are width and height of the ice crystal, respectively. In the case of the

hexagonal approximation, a and c correspond to the diameter of the circle circumscribing a

basal face and the distance between basal faces of the prism, respectively.

Laboratory studies show a strong dependence of ice crystal growth on temperature and

saturation conditions. Different temperature–growth rate dependencies for basal and prism

faces result in changes of the ice crystal habit. Airborne in situ observations indicate that

similar dependencies can occur in clouds [Fleishauer et al., 2002]. Kuroda and Lacmann

[1982] explained the temperature dependence of ice crystal shape by different surface kinetic

growth mechanisms. The dominant mechanisms for the growth of a hexagonal prism at

certain temperatures are presented in Table 2.1. In the range from −4 to 0 ◦C basal and
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prism faces grow via the Vapor–Quasi-Liquid–Solid mechanism (V–QL–S). This mechanism

includes two phase transitions. Water vapor continuously condenses onto the quasi-liquid

layer at the surface of an ice crystal. At the same time, water directly contacting with the

surface of the ice crystal freezes. Gibbs [1878] found that a crystal formed from a fluid has

a shape corresponding to the minimum of the free energy:

∆G =
∑

∆Gi =
∑

σisi, (2.2)

where ∆Gi is the work required to form the i-th surface of the crystal, σi is the work spent

in forming a unit of the i-th surface, and si is the area of the i-th surface. Since for the

V–QL–S mechanism ∆G0001 > ∆G1010, the growth rate of prism faces is higher. Lamb and

Hobbs [1971] experimentally estimated the linear growth rates of basal and prism faces at

supersaturation around 1.3 Pa. Under such low supersaturation the growth is dominated

by molecular events at the crystal surface, while deposition growth has negligible influence

[Pruppacher and Klett , 1997, ch. 13]. The growth rates of basal and prism faces at −4 ◦C

were found to be ∼0.3 and ∼0.7 µm s−1, respectively. Thus, a formed ice crystal likely has

a platelike shape. At temperatures from −10 to −4 ◦C prism faces still grow via the V–

QL–S mechanism. At the same time, the adhesive mechanism becomes dominant for basal

faces. Water molecules are strongly adsorbed onto the rough (at a molecular level) surface

of the crystal. The rate of the adhesive mechanism is higher than the one of V–QL–S.

At −6 ◦C growth rates of basal and prism faces are ∼0.7 and ∼0.4 µm s−1, respectively.

Therefore, columnar ice crystals are formed. In the temperature range from −20 to −10 ◦C

basal faces grow via adhesive mechanisms, while two-dimensional nucleation of water vapor

plays the major role in the growth of prism faces. The rate of two-dimensional nucleation is

about one order of magnitude lower than the one of the adhesive mechanism. This results

in up to 0.5 µm s−1 growth of prism faces while the growth rate of basal faces is lower

than 0.1 µm s−1. This difference causes the formation of ice plates. At temperatures below

−20 ◦C all faces of an ice crystal grow via the two-dimensional nucleation mechanism. This

mechanism is characterized by higher values of free energy ∆G0001 in comparison with ∆G1010

at temperatures down to −32 ◦C, which leads to platelike crystals. At lower temperatures

∆G0001 ≈ ∆G1010.

Even though surface kinetic mechanisms are responsible for the general shape formation,

they can only produce hexagonal-shaped ice crystals with axis ratios that do not differ from

unity significantly. At the same time, axis ratios of ice crystals observed in laboratories often

reach values down to 0.01 for platelike crystals and up to 10 for columnar-shaped particles

[Takahashi et al., 1991]. After the ice particle is formed via a surface kinetic mechanism,

the subsequent geometry development is mainly driven by the diffusional growth, especially

at high supersaturations. The diffusional growth is not only responsible for axis ratios

that are much higher or much lower than unity, but also for the presence of columnar-
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Table 2.1: Growth kinetic processes of hexagonal prisms as a function of temperature. Adopted

from Kuroda and Lacmann [1982]. V–QL–S stands for Vapor–Quasi-Liquid–Solid mechanism.

Surface
Temperature

−4...0 ◦C −10...−4 ◦C −20...−10 ◦C <−20 ◦C

{0001} V–QL–S Adhesive growth 2D nucleation growth 2D nucleation growth

{1010} V–QL–S V–QL–S Adhesive growth 2D nucleation growth

shaped ice crystals at temperatures below −20 ◦C [Kuroda and Lacmann, 1982]. At high

supersaturations the morphological instability of ice crystals leads to preferred growth of

edges and corners [Yokoyama and Kuroda, 1990]. This results in branched structures and

hollow fillings in ice crystals [Kuroda, 1983]. A detailed review of processes involved in the

growth of ice crystals is given by Libbrecht [2005].

2.3 Polarimetric radar observations of ice microphysics in the at-

mosphere

As it was shown in the previous section, the formation and growth processes of ice crystals

under certain temperature and saturation conditions have been deeply investigated under lab-

oratory conditions. Nevertheless, a direct application of this knowledge to numerical weather

prediction and cloud-resolving models is limited because of a lack of continuous and accurate

information on temperature, humidity, and dynamic structure of the atmosphere. There is

no doubt that the constellation and determination of these parameters are much more com-

plicated than of the respective parameters reproduced in laboratories. In addition, processes

such as aggregation, riming, and splintering occurring in natural mixed-phase clouds make

the investigation of microphysical properties of the ice phase even more complicated. These

challenges drive the need for the development of retrieval techniques based on remote sensors

that are sensitive to different physical properties of cloud particles. One instrument class,

frequently applied in meteorological studies, is polarimetric radar. Proved efficiency of this

instrument class led to the establishment of country-wide radar networks for weather mon-

itoring. For instance, the American NEXRAD (Next-Generation Radar) and the European

OPERA (The European Operational Program for Exchange of Weather Radar Information)

networks contain 160 and 48 polarimetric weather radars, respectively [Huuskonen et al.,

2013].
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2.3.1 Polarimetry in weather radar networks

Weather radars are usually operated at S, C, and X-frequency bands, corresponding to 3,

6, and 10 GHz, respectively. These instruments typically perform rapid scans in azimuth

at low elevation angles in order to provide high temporal resolution and spatial coverage.

Applications of weather radar polarimetry cover the following aspects:

• detection of severe hazards such as storms, strong rain and hail events, and tornadoes

[Ryzhkov et al., 2005b];

• quantitative precipitation estimation [Ryzhkov et al., 2005a];

• classification of hydrometeors [Straka et al., 2000; Park et al., 2009];

• microphysical studies of liquid water and ice fractions [Kumjian and Ryzhkov , 2010,

2012; Kumjian et al., 2012];

• identification of electrically active storms [Zrnic and Ryzhkov , 1999];

• ornithological and insect studies [Zrnic and Ryzhkov , 1998];

• mitigation of ground clutter and chaff contamination [Zrnić and Ryzhkov , 2004].

The basic operational principle of polarimetric weather radars implies the transmission

of horizontally and vertically polarized pulses and the reception of horizontal and vertical

components of the radiation returned from atmospheric scatterers. Using the radar equation

for meteorological targets [Probert-Jones, 1964], the equivalent radar reflectivity factor at

the horizontal polarization Zh (hereafter denoted as radar reflectivity) is calculated from the

signal-to-noise ratio in the horizontal channel SNRh:

Zh [dBZ] = 10 logC0 − 20 log rs + 10 log SNRh, (2.3)

where C0 is a constant depending on radar parameters and the dielectric constant of water at

the operation frequency and rs is the distance between the radar and the scattering volume.

The radar reflectivity is usually associated with the 6-th raw moment of the particle size

distribution [Doviak et al., 1979]. In the case of Rayleigh scattering, i.e. when particle sizes

are much smaller than the radar wavelength λ, the radar reflectivity does not depend on the

radar operation frequency.

Modern weather radars are coherent and, therefore, allow for registration of the complex

amplitudes Ėh and Ėv of signals in the horizontal and vertical channels, respectively. These

complex amplitudes are used for the calculation of differential reflectivity ZDR, co-polar

cross-correlation coefficient ρhv (further denoted as correlation coefficient), differential phase
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shift ΦDP , specific differential phase shift KDP , and backscattering differential phase shift δ:

ZDR =
〈ĖhĖ∗h〉
〈ĖvĖ∗v〉

, (2.4)

ρhv =

∣∣∣〈ĖhĖ∗v〉∣∣∣(
〈ĖhĖ∗h〉〈ĖvĖ∗v〉

)1/2
, (2.5)

ΦDP = arg(〈ĖhĖ∗v〉), (2.6)

KDP =
1

2

dΦDP

drs
, (2.7)

δ = ΦDP − 2

∫
KDP (rs)drs. (2.8)

In Eqs. (2.4)–(2.6) 〈 〉 denotes averaging over a number of pulses, ∗ is the complex conjuga-

tion sign. The given polarimetric radar products are sensitive to shape, orientation, dielectric

properties, and concentration of hydrometeors and precipitation [Seliga and Bringi , 1978].

Theoretical dependencies of different polarimetric variables on the mentioned microphysi-

cal properties were given by Matrosov [1991a], Ryzhkov [2001], and Ryzhkov et al. [2002].

Decades of polarimetric observations and their comparison to the data collected from ground-

based and airborne in situ instruments allowed for the development of empirical classification

algorithms. For instance, rule-based and fuzzy logic algorithms used operationally in radar

networks are able to classify atmospheric scatterers into a vast number of categories [Straka

et al., 2000; Park et al., 2009]. A lot of effort has been put into scattering models, technical

developments and calibration of radar hardware, and processing techniques. Knowledge on

these topics was analyzed and summarized in the book of Bringi and Chandrasekar [2001].

In ice-focused studies of Hogan et al. [2002, 2003] and Field et al. [2004] polarimetric

radar observations were combined with airborne in situ measurements. For their studies

the authors applied a 3-GHz weather radar and analyzed only the radar reflectivity and the

differential reflectivity. It was found that ZDR values exceeding 3 dB, observed above the

melting layer, are associated with the presence of supercooled liquid water. An indication

that high ZDR values correspond to pristine columnar or platelike ice crystals was shown. The

authors suggested that high values of the differential reflectivity occur when the depositional

growth dominates over aggregation, which could be valid for the upper part of a cloud. A

spheroidal model was used in order to estimate a range of differential reflectivity produced

by prolate (columnlike) and oblate (platelike) ice crystals. The results showed that prolate

particles cannot induce ZDR exceeding 4 dB. Usually, ice clouds produce ZDR less than

0.5 dB caused either by axis ratios close to unity or by the low dielectric constant of an

air-ice mixture of particles. The authors concluded that often high ZDR values of small

pristine ice particles can be suppressed by the presence of large aggregates dominating the

backscattered signal. Backscattering differential phase shift δ and specific differential phase
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Figure 2.2: Polarimetric fingerprints for microphysical processes of ice phase development. The

direction of arrows shows the change in the polarimetric variable while the size of the arrow

indicates the magnitude of the change relative to other variables for the certain process. Bi-

directional arrows represent possible changes in both directions. The figure is based on Kumjian

[2012].

shift KDP at S, C, and X frequencies are self-consistent polarimetric parameters which can

be used for the investigation of liquid [Otto and Russchenberg , 2011] and ice phases [Trömel

et al., 2013] in deep-precipitating clouds.

Studies of microphysical processes occurring in cloud systems are often based on the

comparison of observed polarimetric variables with those calculated with cloud models. A

detailed evaluation of modeled and measured vertical profiles of polarimetric variables for

cloud microphysical processes has been performed by Kumjian and Ryzhkov [2010, 2012],

Kumjian et al. [2012], and Kumjian [2012]. The authors showed that different processes

lead to diverse changes in size, shape, orientation, and dielectric properties of hydrometeors.

Thus, vertical changes of a set of polarimetric parameters (“fingerprints”) allow the detection

of such processes as size-sorting, collision, evaporation, freezing, aggregation, and melting.

Fingerprints for ice development mechanisms are shown in Fig. 2.2. It can be seen that

radar reflectivity alone is not sufficient for the discrimination between different processes.

Conversely, polarimetric variables contain more information and provide a good basis for

studies of ice microphysics.
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Andrić et al. [2013] employed a two-moment bulk model in order to reproduce values of

radar reflectivity Zh, differential reflectivity ZDR, specific differential phase shift KDP , and

correlation coefficient ρhv produced by ice particles at S-band. The authors found that small

quasi-spherical ice particles, also known as isometric, induce low values of Zh, ZDR, and KDP

and high value of ρhv. In contrast, ice particles with platelike habits induce an increase in

ZDR and a decrease in ρhv. The authors claimed that such effects result from high particle

density, very anisotropic shape, and a diversity of shapes and orientations. It was also

shown that aggregation of particles leads to a decrease in differential reflectivity while radar

reflectivity, correlation coefficient, and specific differential phase shift were increasing. Based

on a sensitivity analysis, the authors emphasized that the used model cannot accurately

reproduce all four parameters.

Based on the differential reflectivity and the correlation coefficient, Melnikov and Straka

[2013] performed quantitative estimations of shape and orientation of ice particles. The au-

thors modeled these polarimetric variables using the spheroidal approximation of scatterers.

Applying a best-fit algorithm, the axis ratios and standard deviations of canting angles,

i.e. the angles at which particles are wobbling along their horizontal axis, were estimated.

Analyzing three cases collected by the dual-polarization S-band weather radar WSR-88D in

Norman, Oklahoma, US, the authors retrieved axis ratios and standard deviations of canting

angles in the range from 0.15 to 0.4 (oblate particles) and from 2◦ to 20◦, respectively. It was

assumed that the observed particles consisted of pure ice. However, this retrieval technique

cannot be used to discriminate between oblate and prolate particles, and can therefore only

be applied when ZDR values are higher than 4 dB because, as it was mentioned before, such

values can only be produced by oblate particles. The authors highlighted that the accurate

determination of shape requires scans in elevation direction which were not available for their

study.

In spite of the effort put by the weather radar community into the development of new

retrieval methods, their improvement is often limited by strict operational modes of the

radars. For instance, elevation scans are usually restricted to several degrees close to the

ground. Fast azimuthal rotation rates limit the Doppler resolution of the retrieved spectra.

These problems can be overcome with cloud radars which are not widely used for weather

monitoring but usually employed at research facilities for microphysical studies of cloud

particles. Therefore, the operational strategies including scanning regimes are much more

flexible in the latter case.

2.3.2 Polarimetry in cloud radars

Cloud radar is an important tool for active remote sensing of atmospheric hydrometeors.

Measurements from cloud radars, which are typically operated at Ka- (∼35 GHz) or W-band

(∼94 GHz) frequencies, are nowadays widely used, often in combination with other active and
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passive remote-sensing instruments, for retrieving cloud microphysical and macrophysical

properties [Illingworth et al., 2007; Kollias et al., 2007; Shupe et al., 2008]. Main advantages

of cloud radars are defined by their short operational wavelength [Kollias et al., 2007]. A

high sensitivity of cloud radars is caused by the λ−4 proportionality of the particle’s radar

cross section. At shorter wavelengths a smaller antenna is required to get a certain gain and

beam-width. In addition, cloud radars typically sense the atmosphere at distances shorter

than 15 km. At such ranges even signal generators with 1–30 W of mean power permit

achieving high sensitivity at Ka and W-band. Having respectively low mass and geometrical

dimensions, cloud radars are often employed at mobile platforms and satellites.

As it was mentioned before, polarimetric radar methods have shown their efficiency in

meteorological studies. Modern cloud radars often have polarization capabilities. Many

commercially produced cloud radars operate in the linear-depolarization-ratio (LDR) mode.

In this mode the radar transmits electromagnetic waves with a horizontal polarization state

and receives both horizontal and vertical polarization components of the scattered wave in

the co- and cross-channel, respectively. LDR is calculated using received powers Pc and Px

in the co- and cross-channel, respectively:

LDR =
Px
Pc
. (2.9)

Zenith observations in LDR mode permit a reliable detection of the melting layer [Zrnic

et al., 1994; Lohmeier et al., 1997; Di Girolamo et al., 2012] and multiple-scattering effects

[Battaglia et al., 2007, 2010], and distinguishing between cloud and insect echoes [Martner

and Moran, 2001]. When measurements of the phase relations between signals in the radar

polarimetric channels in the LDR mode are available, a cross-correlation coefficient ρcx can

be calculated:

ρcx =

∣∣∣〈ĖcĖ∗x〉∣∣∣(
〈ĖcĖ∗c 〉〈ĖxĖ∗x〉

)1/2
, (2.10)

where Ėc and Ėx are the complex amplitudes of the received signals in the co- and cross-

channel, respectively. This parameter (denoted as the co-cross-correlation coefficient in

Ryzhkov [2001]) contains additional information about meteorological scatterers such as the

mean axis ratio and parameters describing the orientation distribution of the scatterers

[Ryzhkov , 2001]. However, the cross-correlation coefficient ρcx is also influenced by the po-

larimetric properties of the radar hardware [Galletti et al., 2014b]. At the same time the

applicability of the LDR mode for the shape estimation is limited because of its high sensi-

tivity to the orientation of cloud particles [Matrosov et al., 2001]. Based on modeling results

the author claims that LDR can vary by up to 10 dB solely due to a variation of the canting

angle for a given shape.
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Pazmany et al. [1994] used a ground-based W-band cloud radar with agile polariza-

tion mode. In this mode a radar transmits pulses with vertical and horizontal polarization

consecutively and receives both vertical and horizontal components of the returned signal

simultaneously. This configuration allowed the authors to measure polarimetric variables

such as differential reflectivity, correlation coefficient, degree of polarization, and linear de-

polarization ratio. Galloway et al. [1997] conducted the first airborne measurements using

an agile-mode W-band cloud radar. The radar was installed on board the King Air research

aircraft of the University of Wyoming. The authors presented polarimetric observations for

the melting layer, needle-shaped ice crystals, and a snowstorm case. It was reported that

interpretation of the set of polarimetric variables can be useful for the estimation of ice

particle shape and orientation. Polarimetric observations and in situ measurements from

the research aircraft were later used by Aydin and Singh [2004] for the development of an

ice classification algorithm. Based on radar reflectivity, differential reflectivity, and linear

depolarization ratio, the authors classified ice particles into five categories: columnar crystal,

planar crystals, mixture of small planar, aggregates, and rimed particles, medium to large

aggregates, and graupel. A validation of the retrieval algorithm with imaging probes showed

∼90 % agreement. Even though the agile polarization configuration showed high efficiency

for ice typing, its implementation is more expensive in comparison with other configurations.

Reinking et al. [2002] evaluated a ground-based W-band cloud radar with slanted LDR

configuration (SLDR) which was implemented based on the conventional LDR mode by 45◦

rotation of the antenna system around the emission direction. The authors highlight easy

implementation of this mode, several dB higher signal in the cross-channel, and low sensitivity

to orientation of particles. Matrosov et al. [2012] showed the applicability of the SLDR mode

for the classification of ice crystals in winter clouds. The authors presented elevation scans

of SLDR and their interrelation to the ice crystals observed in situ at the ground. Analyzed

cases included drizzle, graupel, dendrites, rimed ice particles, and aggregates.

A number of studies was devoted to cloud radars with circular depolarization mode

[Matrosov , 1991a; Martner and Moran, 2001; Galletti et al., 2014a]. The main advantage

of this polarimetric configuration is that the measured circular depolarization ratio is not

significantly influenced by the mean orientation angle of aligned scatterers such as insects or

ice crystals in electrified clouds [Galletti et al., 2014a]. Matrosov and Kropfli [1993] showed

the applicability of elliptical polarization of the transmitted signal for the investigation of

*ice particle shape and common orientation.

In this work a cloud radar with hybrid polarization configuration was used. This mode

allows for changing the polarization of the transmitted signal. By adjusting phase relations

between the transmitting channels, it is possible to implement 45◦ linear, circular, and

elliptical polarizations. Details about the utilized cloud radar are given in Chapter 4.



2.3. POLARIMETRIC RADAR OBSERVATIONS OF ICE MICROPHYSICS 19

2.3.3 Polarization coupling

One of the main challenges for polarimetric observations in all polarimetric configurations is

the polarization coupling (or leakage) which occurs in the waveguide transmission line, the

orthomode transducer, and the antenna (further all the mentioned parts are denoted as the

antenna system) because radar hardware is never ideal. A fraction of the signal received

in a polarization channel leaks into another one and vice-versa. This effect determines

biases in polarimetric variables which vary from radar to radar depending on hardware

characteristics [Chandrasekar and Keeler , 1993; Mudukutore et al., 1995]. This leads to

the fact that polarimetric variables, which are observed from hydrometeor populations with

the same microphysical properties, will differ for different radars. Thus, the polarization

coupling complicates the interpretation and intercomparison of polarimetric measurements

[Zrnić et al., 2010].

The antenna system influence on radar polarimetric measurements has been investigated

in a number of studies. For instance, Chandrasekar and Keeler [1993] performed a theo-

retical study of the errors introduced by complex antenna patterns on the measurements of

LDR, differential reflectivity, and differential phase shift. These authors, however, consid-

ered only measurements of the amplitude antenna patterns and defined the accuracy bounds

for the radar variables mentioned above. Mudukutore et al. [1995] described a technique

for measurements of the differential-phase antenna pattern and investigated the influence

of this pattern on the differential phase shift and the correlation coefficient measured with

weather radars that operate with pulse-to-pulse switching of the transmitted polarization

state [Bringi and Chandrasekar , 2001]. Bringi and Chandrasekar [2001] provide a review of

different studies focusing on antenna influences on polarimetric variables in different radar

configurations. Zrnić et al. [2010] considered the influence of a bias in ZDR produced by the

antenna on rain-rate estimations. Frech et al. [2013] conducted measurements of amplitude

and phase antenna patterns in order to estimate the influence of a radome on polarimetric

observations with weather radars.

It was shown in Kanareykin et al. [1968] that the basis of the electromagnetic wave

coherency matrix can be changed by applying the unitary matrix transformation in such a

way that the orthogonal components of the wave are not correlated. This transformation is

known as the second specific basis of the coherency matrix [Kanareykin et al., 1968]. The

effectiveness of this transformation for the correction of the coherent coupling was recently

shown [Galletti , 2013; Galletti et al., 2014b]. It is noted that non-coherent leakage cannot

be removed with this method.
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2.4 Aims and scientific questions

The literature review given in this chapter showed that polarimetric cloud radars provide

the potential for a continuous quantitative characterization of ice particles’ shape. However,

an accurate shape retrieval requires radar-related studies. First, biases associated with the

polarimetric performance of the antenna system have to be investigated. Chapter 3 covers

comprehensive antenna pattern measurements, which are necessary to understand the nature

of the biases, and for the development of a correction algorithm. Second, a cloud radar with

a new polarimetric scheme is necessary in order to get polarimetric variables, based on

which the shape retrieval can be developed. Implementation of the new cloud radar and

its calibration for the polarization coupling and differences in amplification and electrical

path lengths of polarization channels are described in Chapter 4. Third, based on corrected

polarimetric variables, a technique for the shape characterization is established in Chapter 5.

Analysis of ice particles observed remotely in the atmosphere and those grown under

laboratory conditions allows for answering the following questions:

1. Is there a way to compare microphysical properties such as shape and apparent density

of ice crystals grown in the atmosphere and under laboratory conditions?

2. Are temperature dependencies of the shape and apparent ice density of ice crystals

grown at water saturation in the atmosphere similar to those found under laboratory

conditions (see Sec. 2.2)?

3. Can ice crystals at the top of mixed-phase clouds be considered as pristine?

Addressing these questions requires observations of mixed-phase clouds not only with the

cloud radar but also with a variety of other active and passive instruments. In Chapter 6 a

detailed analysis of distinctive cases obtained during the ACCEPT campaign is shown and

the comparison of remote observations with laboratory findings is presented.
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Chapter 3

Effects of antenna patterns on cloud

radar polarimetric measurements

As it was mentioned in the previous chapter the polarization coupling is an important prob-

lem in radar polarimetry. Accurate and reliable retrieval techniques as well as comparability

can only be based on variables corrected for the coupling effects. This chapter is based

on the published paper of Myagkov et al. [2015] and presents an experimental analysis of

antenna system effects on polarimetric measurements conducted with cloud radars operat-

ing in the LDR mode. Notations were adapted to this thesis. The chapter is organized as

follows. Section 3.1 contains theoretical considerations to describe the antenna system pat-

terns, the description of the instrumentation, and the measurement results. The application

of the coherency matrix for the correction of LDR and the cross-correlation coefficient is

shown in section 3.2. Discrimination between point and volume-distributed targets using

the cross-correlation coefficient is presented in section 3.3.

3.1 Measurements of complex antenna patterns

For this study cloud radars of the type MIRA-35 were used. MIRA-35 is a magnetron-based

35-GHz cloud radar produced by METEK GmbH, Elmshorn, Germany. Several measurement

sites in Europe operate radars of this type in the framework of Cloudnet, which is part of the

“Aerosols, Clouds and Trace gases Research Infrastructure” (ACTRIS), because of their high

sensitivity and reliability [Illingworth et al., 2007; Martucci and O’Dowd , 2011; Di Girolamo

et al., 2012; Bühl et al., 2013; Löhnert et al., 2015]. Görsdorf et al. [2015] describe the

technical implementation of MIRA-35. Recently, a MIRA-35 was installed on board of the

research aircraft HALO [Mech et al., 2014]. Main operational parameters of MIRA-35 are

listed in Table 3.1.
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Table 3.1: Parameters of MIRA-35 used in the operational mode. FFT is Fast Fourier Transfor-

mation.

Peak power [kW] 30

Pulse length [ns] 200

Pulse repetition frequency [kHz] 5

Minimum range [km] 0.15

Maximum range [km] 15

Range resolution [m] 30

Number of pulses for FFT 256

Number of spectra for averaging 200

Sensitivity at 5 km [dBZ] −55

3.1.1 Problem definition

Any polarization analysis requires a choice of the reference polarization basis. Usually, the

orthogonal linear basis formed by two unit vectors defined by the antenna feeders is used.

Generally, unit vectors of the basis correspond to the horizontal and vertical polarization

states. Figure 3.1 illustrates the polarization basis (eh ev) used throughout the thesis.

Indexes h and v denote horizontal and vertical directions, respectively.

In the LDR mode used by many cloud radars, the horizontal component of the wave is

received in the co-channel of the radar and the vertical one is received in the cross-channel.

ev

eh

ez

Figure 3.1: Antenna of the MIRA-35 system mounted on the scanning unit. The description

polarization basis is shown. The unit vector ez shows the propagation direction of the transmitted

radiation.
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Further, the co- and cross-channels are denoted by indexes c and x, respectively. The complex

amplitudes of the received pulses in the co- and cross-channels can be described by:

Ėc = Ec exp (iΦc), (3.1)

Ėx = Ex exp (iΦx), (3.2)

where Ec, Φc and Ex, Φx are amplitudes and phases of the received pulses in the co- and

cross-channels, respectively. The dot over an identifier letter hereafter represents a complex

quantity.

The polarimetric parameter LDR introduced in Eq. (2.9) can be written as follows:

LDR =
〈E2

x〉
〈E2

c 〉
. (3.3)

In the following, linear scales of LDR are applied in equations, while logarithmic scales

expressed in decibels are used for values in figures and discussion. Scatterers with the

unity backscattering matrix are denoted as isotropic particles. Note, that not only spherical

scatterers but also horizontally aligned oblate spheroids and plates can be considered as

isotropic when observed by a vertically pointed radar. Even though the theoretical value of

LDR in the logarithmic scale for isotropic particles is −∞, the measured values are always

finite and depend on radar hardware and noise.

Fig. 3.2 shows the radar reflectivity and LDR obtained with two co-located vertically

pointed MIRA-35 cloud radars that were tested at the METEK site. We denote these radars

as “Radar 1” and “Radar 2”. The distance between the radars was about 30 meters. A

precipitating cloud system which passed over the METEK site was simultaneously observed

by both radars. The melting layer, indicated by a region of increased reflectivity and LDR,

can be seen at heights between 1.3 and 1.5 km when clouds were present. Reflectivity values

of approximately 30 dBZ observed below the melting layer correspond to light rain [Straka

et al., 2000]. For vertically viewing cloud radars, the polarimetric variables of raindrops can

be described by a population of particles with isotropic polarimetric scattering properties.

Therefore, this measurement case was chosen for the comparison of minimal LDR values.

Fig. 3.2-b and c show similar patterns of LDR for both radars. Nevertheless, the values

of LDR are significantly different. In Fig. 3.3 the vertical profiles of LDR measured by both

radars at 21:40 UTC are presented. It can be seen that the antenna system of Radar 1

results in minimal LDR values of about −25 dB and that the antenna system of Radar 2

causes minimal LDR values of approximately −31 dB. Below, the antennas of Radar 1 and

Radar 2 will be denoted as “bad” and “good”, respectively. It can also be noticed that even

though the minimal LDR differs for both systems, the LDR produced by the melting layer

is approximately the same, because the signal in the cross-channel in this layer is mostly

determined by scattering from melting particles and not by the polarization leakage.
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Figure 3.2: Time-height cross sections of observed parameters, (a) reflectivity for Radar 1, (b)

linear depolarization ratio for Radar 1, and (c) linear depolarization ratio for Radar 2, taken at

Elmshorn, Germany, on 8 Nov 2013. The amount of data points in panel (c) is less in comparison

with (b) because of lower sensitivity of Radar 2.

Another example of the antenna system influence on the polarimetric measurements is

given by Matrosov et al. [2012] who evaluated the implementation of the slanted LDR mode

(SLDR mode) into a cloud radar. The SLDR mode can be implemented starting from LDR

mode by rotation of the radar antenna by 45◦. The authors noticed that due to the antenna

rotation the minimal LDR value increased compared to the minimal LDR value observed

in LDR mode. Increased values of minimal LDR can mask less-pronounced depolarizing
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Figure 3.3: Vertical profiles of the linear depolarization ratio for Radar 1 and Radar 2 on

8 Nov 2013, 21:40 UTC (the same case as in Fig. 3.2).

structures in the data. In addition, variations in the minimal LDR of different radar systems

reduce the comparability of respective measurements of LDR.

In general, the full set of receiving antenna patterns can be presented in the matrix form:

FFF(θ, φ) =

(
ḟcc(θ, φ) ḟxc(θ, φ)

ḟcx(θ, φ) ḟxx(θ, φ)

)
, (3.4)

where ḟmn(θ, φ) are complex antenna patterns. The first index m describes the polarization

state of the wave incident on the antenna (either co- or cross-polarized), the second index n

describes the polarization of the receiving channel, and θ and φ represent the azimuth and

elevation angles, respectively, of the received wave with respect to the maximum of the radar

beam.

The minimal LDR value for a particular radar is sometimes denoted as the integrated

cross-polarization ratio (ICPR). Chandrasekar and Keeler [1993] showed that ICPR can be

calculated from the antenna patterns. In terms of the receiving antenna patterns (Eq. (3.4))

ICPR can be written as follows:

ICPR =

∫
|ḟcc(θ, φ)ḟcx(θ, φ) + ḟxc(θ, φ)ḟxx(θ, φ)|2dΩ∫

|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
, (3.5)

where dΩ is the elemental solid angle and the integration is performed over the 4π solid

angle.

Eq. (3.5) can be represented as the integral over a sum of three components:

H1 =
|ḟcc(θ, φ)|2|ḟcx(θ, φ)|2∫
|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
, (3.6)
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H2 =
|ḟxc(θ, φ)|2|ḟxx(θ, φ)|2∫
|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
, (3.7)

H3 =
2Re

(
ḟcc(θ, φ)ḟ∗cx(θ, φ)ḟxc(θ, φ)ḟ∗xx(θ, φ)

)
∫
|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
, (3.8)

It can be seen from Eqs. (3.6) and (3.7) that the calculation of the components H1 and H2

does not require complex antenna patterns. The phase relations appear only in H3.

Using the approach of Chandrasekar and Keeler [1993] and taking into account that

|ḟxc(θ, φ)| � |ḟcc(0, 0)| the bias in the correlation coefficient due to the polarization leakage

can be written as follows:

ρb =

∣∣∣∫ [ḟcc(θ, φ)3ḟcx(θ, φ) + ḟcc(θ, φ)2ḟxc(θ, φ)ḟxx(θ, φ)
]
dΩ
∣∣∣[∫

|ḟcc(θ, φ)ḟcx(θ, φ) + ḟxc(θ, φ)ḟxx(θ, φ)|2dΩ
∫
|ḟ2
cc(θ, φ)|2dΩ

]1/2
. (3.9)

We further introduce the following parameters:

R1 =
Re
{[
ḟcc(θ, φ)3ḟcx(θ, φ) + ḟcc(θ, φ)2ḟxc(θ, φ)ḟxx(θ, φ)

]}
[∫
|ḟcc(θ, φ)ḟcx(θ, φ) + ḟxc(θ, φ)ḟxx(θ, φ)|2dΩ

∫
|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
]1/2

, (3.10)

R2 =
Im
{[
ḟcc(θ, φ)3ḟcx(θ, φ) + ḟcc(θ, φ)2ḟxc(θ, φ)ḟxx(θ, φ)

]}
[∫
|ḟcc(θ, φ)ḟcx(θ, φ) + ḟxc(θ, φ)ḟxx(θ, φ)|2dΩ

∫
|ḟ2
cc(θ, φ) + ḟ2

xc(θ, φ)|2dΩ
]1/2

. (3.11)

Integrating the components H1,2,3 and R1,2 over specific areas of the antenna patterns can

indicate where most of the coupling between the co- and cross-channel comes from.

Antenna manufacturers usually provide only information about two amplitude cut planes,

|ḟcc(θ, 0)| and |ḟcc(0, φ)|, which is not sufficient for the analysis of the antenna system in-

fluence on polarimetric variables. Therefore, measurements of the complex antenna pattern

were performed for two different antennas with good and bad polarimetric characteristics,

respectively.

3.1.2 Measurement description

The antenna pattern measurements were performed as described by Chandrasekar and Keeler

[1993] and Mudukutore et al. [1995]. The field experiment was conducted at the Hungriger

Wolf airport near Hohenlockstedt (53.993◦N, 9.577◦E), Germany, during the period from

28 January 2014 to 1 February 2014. The cloud radar MIRA-35, denoted as Radar 1 in

Subsection 3.1.1, was used for the measurements. The radar was equipped with a scanning
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Figure 3.4: The MIRA-35 cloud radar with the scanning unit at METEK GmbH. The photo

was provided by METEK GmbH.

unit (Fig. 3.4) based on drives of type Aerotech AGR200 with high gear ratio. The scanning

unit allows changing the azimuth angle between 0◦ and 360◦ and the elevation angle between

0◦ and 180◦ with a resolution of 0.034◦. Two different Cassegrain dual reflector antennas

were taken for the measurements. They were denoted as “bad” and “good” antennas in

Subsection 3.1.1. Both antennas were installed to the same transceiver unit of Radar 1. The

antenna specifications as provided by the manufacturer are listed in Table 3.2.

In general, the moments of the Doppler spectra measured with MIRA-35 are used to de-

Table 3.2: Specification of used antennas. OMT is an orthomode transducer

Type Cassegrain

Dish Parabolic

Feed design Center-fed

Number of struts 4

Diameter [m] 1

Weight [kg] 21.5

Operation band [GHz] 35.1 – 35.3

Gain [dB] 49.2

Beam width [◦] 0.6

Sidelobes [dB] < −18

Voltage standing wave ratio < 1.33

OMT coupling [dB] −36
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rive information about cloud properties. The phase relations between co- and cross-channels

are not saved. Nevertheless, the receiver unit of the radar allows saving in-phase (I) and

quadrature (Q) components of the received signal in both polarization channels. The quadra-

ture components make it possible to obtain not only the amplitude of the signals but also

their phase. Therefore, during the antenna pattern measurements the radar was operating in

the receiving mode (the transmitter unit was turned off) and the receiving antenna patterns

were measured, by means of the I/Q components, consecutively with the good and the bad

antennas.

A custom-made test transmitter was used for generation of the continuous wave at Ka-

band. The test transmitter consists of a continuous-wave X-band generator with software-

based frequency control, a 4-times frequency multiplier, and an antenna system based on a

pyramidal horn antenna. The horn antenna forms a linearly polarized wave. As the antenna

system of the test transmitter allows for rotation of the horn, it is possible to change manually

the orientation angle β in the polarization plane of the transmitted wave with respect to the

unit vector eh of the radar polarization basis. The output power of the test transmitter is

4 mW.

Basically, the bi-static measurements of the absolute phase require high stability of the

local oscillators of transmitter and receiver. The local oscillators that are used in the radar

receiver and the test transmitter are based on quartz resonators and cannot be used for

long-term phase measurements due to the frequency drift. The short-term stability (Allan

deviation over 1 s) of quartz resonators is of the order of 10−9 [Vig , 1992], which allows

performing phase measurements only for short time periods as the local oscillators can be

assumed coherent in this case. Therefore, only the phase differences between polarization

channels were calculated in addition to the amplitudes. Moreover, the absolute phases are

not necessary for the modeling of scattering properties of meteorological scatterers because

scattering is non-coherent in this case. The antenna measurement at β = 0◦, when the

transmitted wave is horizontally polarized, gives the information about amplitude and phase

relations between the elements ḟcc(θ, φ) and ḟcx(θ, φ). The information about the elements

ḟxc(θ, φ) and ḟxx(θ, φ) can be obtained at β = 90◦. As the measurements are not coherent

over long time periods, a third measurement at β = 45◦ is necessary to get the correct phase

difference between the measurements at β = 0◦ and β = 90◦.

The test transmitter was mounted at the airport tower at about 12 m height above

ground. To minimize reflections from the tower the antenna of the test transmitter was

installed 1 m away from the tower walls by mounting it on a wooden bar. The radar was

placed 600 m away from the tower to ensure that the test transmitter was within the far

field of the radar antenna, which starts at 235 m distance. Before the measurements, the

radar antenna angular position with the maximum received power was determined. At this

position it is assumed that θ = 0◦ and φ = 0◦. Then the test transmitter horn was manually
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rotated to the position where the measured LDR was minimal. This angular position of the

horn was assumed to correspond to β = 0◦. The frequency of the test transmitter was set

to 35.15 GHz, which corresponds to the operating frequency of the radar magnetron. To

receive maximum SNR the local oscillators of the radar were adjusted so that the center of

the receiving bandwidth of the radar matches 35.15 GHz. The frequency was tuned in steps

of 1 MHz and the maximum of SNR was found at a 1-MHz offset. Such an offset is within

the uncertainty of the frequency synthesizers, which are mainly optimized for spectral purity

and not for accurate frequency matching.

The scanning regime can be described as follows. The radar was scanning over the

azimuth in the range from −4◦ to 4◦ with respect to the maximum position with an angular

speed 0.5◦ s−1. The elevation angle was changed by 0.1◦ after every azimuth cycle. To avoid

effects of the ground on signal propagation, the pattern measurements were performed in

two steps. First, the lower half of the antenna pattern was measured. Then the antenna was

rotated in both azimuth and elevation by 180◦ to measure the second half of the pattern

in the same relative position to the ground. The overlap in elevation between these two

measurements was 2◦. The same procedure was done for β = 45◦ and β = 90◦. The β = 45◦

and β = 90◦ orientations were set with respect to the position with β = 0◦ by using a spirit

level.

The processing of the raw data with quadrature components of the received signal includes

the calculation of the following parameters:

Fcc(θ, φ) =
〈|ḟcc(θ, φ)|〉
〈|ḟcc(0, 0)|〉

, (3.12)

Fcx(θ, φ) =
〈|ḟcx(θ, φ)|〉
〈|ḟcc(0, 0)|〉

, (3.13)

Fxc(θ, φ) =
〈|ḟxc(θ, φ)|〉
〈|ḟcc(0, 0)|〉

, (3.14)

Fxx(θ, φ) =
〈|ḟxx(θ, φ)|〉
〈|ḟcc(0, 0)|〉

, (3.15)

α1(θ, φ) = 〈arg(ḟcc(θ, φ))− arg(ḟcx(θ, φ))〉, (3.16)

α2(θ, φ) = 〈arg(ḟxc(θ, φ))− arg(ḟxx(θ, φ))〉, (3.17)

α3(θ, φ) = 〈arg(ḟcc(θ, φ))− arg(ḟxx(θ, φ))〉. (3.18)

In Eqs. (3.12) – (3.18) Fmn are the normalized amplitude patterns and α1,2,3 are the phase

differences between the respective complex antenna patterns. The averaging interval was

0.2 s. The resulting apparent azimuth resolution of the antenna patterns is 0.1◦. The
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Figure 3.5: Normalized amplitude antenna patterns for the bad (first and third columns) and

good (second and forth columns) antenna. Note that scales for (a) and (d) differ from (b) and (c).

normalized antenna patterns can be written in the matrix form:

F′F′F′(θ, φ) =

(
Fcc(θ, φ) Fxc(θ, φ)ei(α2(θ,φ)−α3(θ,φ))

Fcx(θ, φ)e−iα1(θ,φ) Fxx(θ, φ)e−iα3(θ,φ)

)
. (3.19)

3.1.3 Results of antenna pattern measurements

The results of the receiving-pattern measurements for both antennas are shown in Figs. 3.5 –

3.7. The measured patterns are typical for a center-fed parabolic reflector [Zrnić et al., 2010].

In Fig. 3.5 it can be seen that the patterns of Fcc(θ, φ) and Fxx(θ, φ) are almost identical for

both antennas. The main beams are symmetrical in the azimuth and elevation plane and

their width at the half-power level is about 0.7 degrees (Fig. 3.7), which is in good agreement

with the technical documentation of the antennas. Visible are also two adjacent sidelobes

with amplitudes of −18 and −27 dB, respectively. The second and following sidelobes have

negligibly low amplitudes and do not have a significant influence on the resulting signal.

Table 3.3 shows the ICPR componentsH1,2,3 integrated over different areas of the antenna

patterns. The areas are illustrated in Fig. 3.8. The results indicate that the fraction of ICPR

induced in the area outside of the main beam does not exceed 10 % for both antennas. The
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combined analysis of the co-polarized and cross-polarized antenna patterns shows that the

polarization leakage in the center of the main beam is very low. The ratio of the cross-

polarized signal to the co-polarized signal yields values of about −45 and −35 dB for the

good and bad antenna, respectively. It should be noted that the real values of the coupling

in the beam centers can be even lower. The measured values depend not only on the quality

of the horn antenna of the test transmitter, but also on the accuracy of the positioning of

this transmitter. Nevertheless, lower coupling values in the beam center will not change the

results significantly. Such low coupling values explain the small contribution of the beam

center to ICPR (zone I in Table 3.3). The largest contribution to ICPR for both antennas

comes from zones II and III (Table 3.3). These zones correspond to the periphery of the

main beam. Within zones II and III there are four areas with an increased leakage (the mean

ratios of the cross-polarized signal to the co-polarized signal are −13 dB and −8 dB for the

good and bad antenna, respectively). These areas are formed by the struts [Chandrasekar

and Keeler , 1993] holding the antenna sub-reflector (Fig. 3.4), which causes an increase in

ICPR.
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Figure 3.6: Patterns of the phase differences for the bad (upper row) and good (lower row)

antenna, respectively.



32 CHAPTER 3. EFFECTS OF ANTENNA PATTERNS

−40

−35

−30

−25

−20

−15

−10

−5

0

 

 

−2 −1 0 1 2
0

45

90

135

180

Normalized abs(fyy)

Phase difference
between fxx and fyy

−40

−35

−30

−25

−20

−15

−10

−5

0

 

 

−2 −1 0 1 2
0

45

90

135

180

Fxx(θ,0°)

α3(θ,0°)

Fxx(0°,φ)
P

ha
se

 [d
eg

]

N
or

m
al

iz
ed

 a
m

pl
itu

de
 [d

B
]

Angle [deg]

−40

−35

−30

−25

−20

−15

−10

−5

0

 

 

−2 −1 0 1 2
0

45

90

135

180

P
ha

se
 [d

eg
]

N
or

m
al

iz
ed

 a
m

pl
itu

de
 [d

B
]

Angle [deg]

Fxx(θ,0°)

α3(θ,0°)

Fxx(0°,φ)

a b

Figure 3.7: Cut planes of Fxx over the azimuth, of Fxx over the elevation, and of α3 over the

azimuth for the bad (a) and good (b) antenna.

Table 3.3 also demonstrates the dominance of the components H1 and H2 in ICPR for the

bad antenna. The total contribution of H3 for the bad antenna is negligibly small, because

negative values in the center of the main beam and positive values at the periphery of the

Table 3.3: Components H1,2,3 of ICPR calculated from the measured complex antenna patterns.

Values in columns I-V correspond to different integration areas (Fig. 3.8). All values are given in

linear units.

Integrated parameter I II III IV V Total

Bad antenna

H1 × 104 2.01 4.30 3.62 0.66 0.39 10.98

H2 × 104 5.28 10.03 4.85 0.77 0.29 21.22

H3 × 104 −4.45 −2.62 5.71 0.86 0.46 −0.04
3∑
i=1

Hi × 104 2.84 11.71 14.18 2.30 1.14 32.17

Good antenna

H1 × 104 0.10 0.44 0.48 0.09 0.04 1.16

H2 × 104 0.45 1.70 1.18 0.19 0.08 3.60

H3 × 104 −0.13 0.73 0.93 0.10 0.04 1.66
3∑
i=1

Hi × 104 0.42 2.87 2.58 0.38 0.16 6.42
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Figure 3.8: Integration areas. The areas I–V have outer radii of 0.2◦, 0.4◦, 0.6◦, 0.8◦, and 2.5◦,

respectively, with respect to the position θ = 0◦ and φ = 0◦.

main beam partially cancel out. Even though in the case of the good antenna H2 gives the

largest contribution to ICPR, all the components have the same order of magnitude. Note,

the H3 contribution exceeds the H1 contribution and cannot be neglected as in the case of

the bad antenna.

From Fig. 3.7 it can be concluded that the phase difference α3(θ, φ) is constant in the

main beam. The standard deviation of α3(θ, φ) within the two sidelobes is 8◦ and 18◦ for

the good and bad antennas, respectively. The value of α3(θ, φ) is thus mostly defined by the

different path lengths of the co- and cross-channel.

The evaluation of α1,2(θ, φ), based on Fig. 3.6, shows that the phase difference between

the cross-polarized and co-polarized signals is not constant over the whole antenna pattern

especially in zones II and III which produce up to 80 % of the polarization leakage.

Using the measured antenna patterns, ICPR can be calculated from Eqs. (3.5) and (3.19).

These calculations yield ICPR values of −24.9 and −31.9 dB for the bad and good antenna,

respectively. As it was shown in Sec. 3.1.1, the corresponding ICPR values measured with

a vertically-aligned beam in light-rain conditions were about −25 and −31 dB, respectively.

Thus it is concluded that there is a relatively good agreement between the calculated and

measured ICPR values.

In order to assess the impact of the phase differences on the estimate of ICPR this

estimate was compared with the upper bound of ICPR calculated only from amplitude
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Table 3.4: Components R1,2 of ρb calculated from the measured complex antenna patterns.

Integration areas are the same as in Table 3.3.

I II III IV V Total

Bad antenna

R1 × 102 4.26 10.04 4.20 0.23 −0.15 18.58

R2 × 102 −16.77 −18.06 −1.43 0.36 0.11 −35.81

Good antenna

R1 × 102 1.80 3.89 3.50 0.22 −0.12 9.28

R2 × 102 6.91 −1.46 −6.65 0.03 0.07 −1.09

antenna patterns [Chandrasekar and Keeler , 1993]:

ICPRub =

∫
[Fcc(θ, φ)Fcx(θ, φ) + Fxc(θ, φ)Fxx(θ, φ)]2 dΩ∫

[Fcc(θ, φ)2 − Fxc(θ, φ)2]2 dΩ
. (3.20)

Calculated values of ICPRub are −22.3 dB and −30.8 dB for the bad and good antenna,

respectively. The ICPRub value of the bad antenna is about 2.5 dB higher than the ICPR

value estimated in light rain and the ICPR calculated from the antenna patterns. The

ICPRub value of the good antenna is 0.2 and 1.1 dB higher than the ICPR value estimated

in light rain and the one calculated from the antenna patterns, respectively.

Analysis of Table 3.4 data shows that the components of the bias in the correlation

coefficient are mainly formed in the main antenna beam (zones I-III). Values of ρb calculated

from the antenna patterns are 0.4 and 0.1 for the good and bad antenna, respectively. Those

measured in light rain are 0.37 and 0.17, respectively.

The values of ICPR and ρb allow for an estimation of the degree of polarization [Galletti

et al., 2012]:

µ =

[
1− 4ICPR

(1 + ICPR)2
(1− ρ2

b)

]1/2

. (3.21)

The degree of polarization µ in the case of isotropic scatterers should be strictly equal to 1, i.e.

the received wave should be fully polarized [Galletti et al., 2012]. Nevertheless, µ calculated

for isotropic particles using the antenna patterns are 0.9946 and 0.9987 for the bad and good

antenna, respectively. This indicates that the received wave has a non-polarized component

that is produced by the antenna system and requires a correction in order to get accurate

polarimetric variables.

In the next section an approach for the correction of polarimetric variables obtained in

the LDR mode is presented. The approach is based on a decomposition of the coherency

matrix into non-polarized and fully-polarized parts.
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3.2 Correction of LDR measurements

Electromagnetic waves with 0 < µ < 1 are denoted as partly polarized waves. The polariza-

tion state of a partly polarized wave can be characterized statistically by the 2×2 coherency

matrix [Kanareykin et al., 1966, 1968; Born and Wolf , 1975]:

JJJ =

(
Jcc J̇cx

J̇xc Jxx

)
. (3.22)

The elements of the coherency matrix JJJ can be calculated as follows [McCormick and Hendry ,

1975]:

Jcc = 〈ĖcĖ∗c 〉, (3.23)

J̇cx = 〈ĖcĖ∗x〉, (3.24)

J̇xc = 〈ĖxĖ∗c 〉, (3.25)

Jxx = 〈ĖxĖ∗x〉. (3.26)

The complex amplitudes Ėc and Ėx for every received pulse are expressed using the I and

Q-components measured by the radar:

Ėc = Ic + iQc, (3.27)

Ėx = Ix + iQx. (3.28)

The elements Jcc and Jxx are real quantities describing the received powers in the co-

and cross-channel, respectively. The complex element J̇cx defines the covariance between the

signals in the co- and cross-channels. It is necessary to note that J̇cx = J̇∗xc. In terms of the

coherency matrix elements, LDR can be written in the following form:

LDR =
Jxx
Jcc

. (3.29)

It should be emphasized that Eq. (3.29) is only valid when the coherency matrix is specified

in the polarimetric basis formed by horizontal and vertical unit vectors (see Fig. 3.1).

The link between the coherency matrix elements for the case of scattering from distributed

isotropic particles and corresponding antenna patterns can be found in Chandrasekar and

Keeler [1993]. It is shown in Kanareykin et al. [1966] that the probability density function
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of the phase shift between the orthogonal components W (∆Φ) is defined by two parameters:

γ = arg(J̇cx), which specifies the mean value of ∆Φ, and the correlation coefficient

ρcx = |J̇cx|/
√
JccJxx, (3.30)

which defines the width of W (∆Φ), see Fig. 3.9.

The coherency matrix of a partly polarized wave can be represented as the sum of two

components [Kanareykin et al., 1966; Born and Wolf , 1975]:

JJJ = ALIII +

(
BL ḊL

Ḋ∗L CL

)
, (3.31)

with the condition:

BLCL − |ḊL|2 = 0, (3.32)

where III is a 2×2 unit matrix. AL, BL, CL, and ḊL can be calculated with the following

equations [Kanareykin et al., 1966; Born and Wolf , 1975]:

AL =
1

2

[
SpJJJ−

(
Sp2JJJ− 4 detJJJ

)1/2]
, (3.33)

BL =
1

2

[
Jcc − Jxx +

(
Sp2JJJ− 4 detJJJ

)1/2]
, (3.34)
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Figure 3.9: Centralized probability density function W (Φ), where Φ = ∆Φ − γ. Adopted from

Kanareykin et al. [1966].
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CL =
1

2

[
Jxx − Jcc +

(
Sp2JJJ− 4 detJJJ

)1/2]
, (3.35)

ḊL = J̇cx. (3.36)

Here Sp is the matrix trace and det is the matrix determinant.

In Eq. (3.31) the first and second components describe the non-polarized and fully-

polarized parts of the electromagnetic wave, respectively, i.e., the received electromagnetic

wave can be presented as a sum of non-polarized and fully-polarized waves. The non-

polarized part does not have a major polarization state and the phase shift between its

orthogonal components is uniformly distributed, so that the cross-correlation coefficient of

the non-polarized wave is 0. The fully-polarized part is characterized by a constant polar-

ization state. The correlation coefficient of the fully-polarized wave is 1.

In the case of vertical sensing of hydrometeors consisting of drizzle or light rain the

scattering volume can be assumed to be isotropic. Under this condition the parameters Ai,

Bi, and Ci (the index i marks the case of isotropic scattering only) can be calculated from the

I/Q-measurements using Eqs. (3.22)–(3.28) and (3.33)–(3.35). Further, the leakage from the

cross-channel into the co-channel is neglected and the normalized parameters are introduced:

A′i =
Ai
Bi
, (3.37)

C ′i =
Ci
Bi
. (3.38)

The parameter A′i describes the power of the non-coherent leakage from the co-channel into

the cross-channel that is formed by the antenna system. The parameter C ′i describes the

power of the coherent leakage that is produced by the antenna system. As isotropic particles

do not change the polarization state of the scattered wave, the polarimetric properties of the

received wave are defined by the antenna system of the radar. A′i and C ′i are stable in time

under the assumption that the radar characteristics are constant. For Radar 1 equipped

with the bad antenna, mean values of A′i and C ′i found from vertical measurements in light

rain using Eqs. (3.33)–(3.35) are −25.3 and −32.9 dB, respectively. Those for Radar 2 with

the good antenna are −30.9 and −47.6 dB, respectively.

The LDR for isotropic scatterers can be presented in terms of the decomposed coherency

matrix elements:

LDRi = ICPR =
A′i + C ′i
A′i + 1

. (3.39)

As shown previously, the ICPR of a given radar system can be either calculated using mea-

surements of complex antenna patterns and Eqs. (3.5) and (3.19), or it can be measured in

drizzle or light rain as shown in Sec. 3.1.1. Measurements in drizzle were used previously to
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determine ICPR for cloud radars of NOAA and the U.S. Department of Energy as described

in Matrosov et al. [2001] and Matrosov et al. [2012].

For anisotropic scatterers the fully-polarized and non-polarized parts of the backscatter

signals depend not only on the radar hardware properties, but also on the scattering proper-

ties of the scatterers. As it was mentioned above, the correlation coefficient ρcx, which also

influences the fully-polarized and non-polarized fraction of the received wave [Galletti et al.,

2012], depends on shape, orientation, and dielectric properties of the scatterers.

Hydrometeors are usually assumed to have a linear Eigen polarization basis [Bringi and

Chandrasekar , 2001]. The polarimetric properties of backscatter signals produced by such

scatterers can be decomposed into isotropic and anisotropic parts [Tatarinov and Tatarinov ,

2011]. Taking this into account, the expressions for the elements AL and CL of the coherency

matrix can be rewritten in the following form:

AL = Ai +Aa, (3.40)

CL = Ci + Ca, (3.41)

where Aa and Ca are the non-polarized and fully-polarized components of the received signals

produced by anisotropic scattering in the cross-channel, respectively. As it was shown previ-

ously, the isotropic part of the signal in the cross-channel is defined by the radar hardware.

Using Eqs. (3.30) – (3.32), (3.40), and (3.41), LDR and ρcx can be presented as follows:

LDR =
Ai +Aa + Ci + Ca
Ai +Aa +BL

, (3.42)

ρcx =

√
BL(Ci + Ca)√

(Ai +Aa +BL)(Ai +Aa + Ci + Ca)
. (3.43)

The corrected values of AL, BL, and CL, i.e., the values that would be observed in case

of an ideal radar, can be written as:

Acor =

AL − 〈A′i〉BL, if AL/BL > 〈A′i〉+ 3σ(A′i)

0, otherwise,
(3.44)

Bcor = BL(1 + 〈A′i〉+ 〈C ′i〉), (3.45)

Ccor =

CL − 〈C ′i〉BL, if CL/BL > 〈C ′i〉+ 3σ(C ′i)

0, otherwise.
(3.46)

In Eqs. (3.44) and (3.46) σ is the standard deviation. The averages and standard deviations

in Eqs. (3.44)–(3.46) are taken from the regions where rain or drizzle is observed. The

conditions introduced in Eqs. (3.44) and (3.46) are necessary to reduce the errors caused by
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noise. Then, the corrected values of LDR and ρcx can be obtained by using Eqs. (3.44) –

(3.46):

LDRcor =
Acor + Ccor
Acor +Bcor

, (3.47)

ρcor =

√
BcorCcor√

(Acor +Bcor)(Acor + Ccor)
. (3.48)

For isotropic particles both Acor and Ccor are equal to 0. Thus, Eq. (3.48) contains the

indeterminate form 0/0 and the value of ρcor is undefined [Galletti et al., 2012]. In this case

the value of ρcor is replaced by the limit:

lim
Jxx→0

|J̇cx|√
JccJxx

. (3.49)

In the case of reflection symmetry (e.g., randomly oriented particles) |J̇cx| = 0 [Nghiem

et al., 1992; Ryzhkov , 2001]. Under this condition the limit in Eq. (3.49) becomes 0.

It is assumed that large cloud particles in a low-turbulence environment are mostly ori-

ented with their major dimensions in the horizontal plane [Matrosov et al., 2012]. In this

case, for the LDR mode, AL and CL are several orders of magnitude smaller than BL, so

A′i � 1 and C ′i � 1, and Eqs. (3.47) and (3.48) can be simplified as follows:

LDRcor ≈ LDR− ICPR, (3.50)

ρcor ≈

√
CL − C ′iBL

BL(LDR− ICPR)
. (3.51)

A result similar to Eq. (3.50) was previously obtained by Ryzhkov et al. [2002].

As an example, the results of the LDR correction based on Eq. (3.47) for the vertical

profiles shown in Fig. 3.3 are depicted in Figs. 3.10 and 3.11. The minimum value of corrected

LDR was limited to −40 dB to make the figures more illustrative. It can be seen from

Fig. 3.10 that the correction procedure lowered LDR values in the rain regions by more than

7 dB for both radars. The correction results are also noticeable in the ice region that was

present above about 1.5 km height. Observed and corrected LDR values for the melting

layer are approximately the same. Even though the difference between the corrected LDR of

Radar 1 and Radar 2 can reach several decibels, the values are on average similar (Fig. 3.11).

The data scatter in Fig. 3.11, which generally increases with decreasing LDR, provides a

measure for uncertainty in the LDR correction. For very low LDR (< −35 dB), measurement

noise is already playing a major role. For such low values differences in corrected LDR are

considered to be mostly due to noise and correction uncertainties.

The results of the correction of the correlation coefficient are shown in Fig. 3.12. The

height-time cross-sections of the observed (i.e., not corrected) correlation coefficient ρcx for
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Figure 3.10: Vertical profiles of linear depolarization ratios for Radar 1 and Radar 2 for the

same case as in Fig. 3.3.

Radar 1 and Radar 2, respectively, are presented in 3.12a and b. As it was mentioned in

Sec. 3.1.1, the melting layer was located at 1.5 km height. Particles in this layer have strongly

non-spherical shapes and their orientation is random in the polarization plane. Therefore,

the observed values of the correlation coefficient for the melting layer are close to 0, because

the non-polarized component of the received signals is mostly defined by the scattering
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Figure 3.11: Scatter plot of observed (red dots) and corrected (blue dots) values of linear

depolarization ratio for Radar 1 and Radar 2 for the same case as in Fig. 3.10.
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Figure 3.12: Observed correlation coefficient for Radar 1 (a), observed correlation coefficient for

Radar 2 (b), corrected correlation coefficient for Radar 1 (c), corrected correlation coefficient for

Radar 2 (d), corrected linear depolarization ratio for Radar 1 (e), and corrected linear depolariza-

tion ratio for Radar 2 (f) for the same case as in Fig. 3.2.

characteristics of the particles and not by the radar hardware properties. The values of the

observed correlation coefficient ρcx in rain for Radar 1 are in the range of 0.3–0.4 while for

Radar 2 those values are about 0.1–0.2. The values of observed ρcx for the rain are mostly

defined by the radar hardware, and they are different for every radar. Above the melting

layer some areas with decreased values of observed ρcx can be clearly seen in Fig. 3.12a. Ice

particles in these areas are not isotropic scatterers. For instance, this can occur when some

columnar shaped particles are present or non-spherical particles have a wide distribution in

canting angle [Matrosov , 1991a]. Both cases lead to increased corrected values of LDR that

can be apparently seen in Figs. 3.12e and f.

In Fig. 3.12c and 3.12d the height-time cross-sections of the corrected correlation coeffi-

cient ρcor are shown. It can be seen that for the whole cloud system ρcor is close to 0. This

finding indicates that particles are either isotropic or non-spherical with random orientation
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in the polarization plane [Ryzhkov , 2001; Ryzhkov et al., 2002] such as particles in the melting

layer.

3.3 Discrimination between insects and clouds

A detailed analysis of the phase antenna patterns shown in Fig. 3.6 allowed for the develop-

ment of a basis for a separation of insects and clouds. The approach is based on utilization of

the cross-correlation coefficient. As it was shown in Sec. 3.2, clouds are volume distributed

targets and characterized by low values of ρcor when a cloud radar is pointed vertically. In

contrast, it is known that insects can be considered as point scatterers that produce strong

depolarization [Martner and Moran, 2001]. In this case, the antenna system produces a nar-

row distribution of the phase difference between the co- and cross-channel signals (Fig. 3.6c)

which leads to the high values of ρcx. Fig. 3.13 shows height-time cross sections of observed

and corrected correlation coefficients and corrected LDR for the event from 12 September

2013. The melting layer, characterized by low values of both observed and corrected cor-

relation coefficients and LDR of −15 dB, was observed at about 1.7 km height. Above the

melting layer, falling ice particles were observed, while below the melting layer light rain

occurred. The echoes with high values of observed ρcx and LDR near the ground below 800

m correspond to insects. It can be seen that for insects observed and corrected correlation

coefficients do not differ significantly. This fact indicates that the co- and cross-polarized

components of the received signal are highly correlated either due to preferred orientation of

insects, in agreement with other observations [Zrnic and Ryzhkov , 1998], or by low concen-

tration of insects in the resolution volume, or both. The difference in the cross-correlation

coefficient can be used for the separation of insects (point scatterers) and clouds (distributed

scatterers). This can be especially useful for cases, when insects are present close to a melting

layer, i.e. when LDR measurements cannot provide a reliable discrimination.
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Figure 3.13: Observed (a) and corrected (b) correlation coefficient and corrected linear depolar-

ization ratio (c) for the measurement taken with Radar 1 at Elmshorn, Germany, on 12 September

2013.
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Chapter 4

Cloud radar MIRA-35 with hybrid

mode

In the previous chapter, the approach of the correction of polarimetric variables for the

polarization coupling was presented. The approach was applied to LDR and ρcx measured

with the LDR-mode cloud radar. The developed approach is a prerequisite for the current

chapter, which is devoted to a newly developed 35-GHz cloud radar MIRA-35 with hybrid

polarimetric configuration and scanning capabilities. The material was published in Myagkov

et al. [2016a]. The full procedure chain of the technical implementation and the realization

of the setup of the hybrid-mode cloud radar are presented. The chapter is organized as

follows. In Sec. 4.1 the implementation of the horizontal and vertical channel of the radar is

presented and the phase adjustment procedure is described. An overview of the general data

processing is given in Sec. 4.2. The correction of the data for the differences of amplifications

and electrical path lengths in the horizontal and vertical channel is discussed in Sec. 4.3. The

representation of the measured data in a 45◦-rotated polarization basis, which permits the

retrieval of the depolarization ratio, is presented in Sec. 4.4. Based on the findings from

Chapter 3, in Sec. 4.5 it is explained how antenna effects on polarimetric measurements

are corrected using the results obtained in the previous chapter. The spectral polarimetric

variables are derived in Sec. 4.6. The approach applied to increase the signal-to-noise ratio

in the hybrid mode is presented in Sec. 4.7.

4.1 Implementation and phase adjustment

Typically, cloud radars of type MIRA-35 emit linearly polarized waves in one of the chan-

nels. The corresponding operation mode is denoted as LDR mode. When the LDR correction

described in Chapter 3 is applied, LDR measurements from different sites can be intercom-

pared. Often, LDR measurements taken with vertically pointed cloud radars are used for
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Figure 4.1: Simplified block diagrams of typical LDR (a) and hybrid (b) modes of MIRA-35.

Components added for the implementation of the hybrid mode from the LDR mode are shown in

yellow color.

clutter filtering [Görsdorf et al., 2015] and a reliable detection of the melting layer [Lohmeier

et al., 1997]. At the same time, the applicability of the LDR mode for shape estimation is

limited because of its high sensitivity to the orientation of cloud particles [Matrosov et al.,

2001].

For the shape studies presented in this thesis the hybrid mode is used. This mode is also

known as Simultaneous Transmission and Simultaneous Reception (STSR) mode and is often

used in weather radars [Ryzhkov et al., 2005a]. In hybrid mode a radar transmits horizontal

and vertical components of the signal simultaneously. Thus, expensive high-pulse-power

polarization switching is not required. As will be shown in Chapter 5, the hybrid mode

is capable of providing polarimetric parameters that allow for a quantitative estimate of

particle shape and orientation characteristics of cloud hydrometeors.

The implementation of the hybrid mode was based on a standard scanning MIRA-35 cloud

radar configured for the LDR mode. Simplified schemes of the traditional LDR mode and

the implemented hybrid-mode configuration are shown in Fig. 4.1. In the hybrid mode, high-

frequency power, generated by the magnetron-based transmitter, is split into two channels

by a 3-dB coupler. A second circulator is added to decouple the high-power transmission

line from the sensitive receiver in the vertical channel.

It is known that the exact polarization state of the transmitted radiation depends on the
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phase shift between the orthogonal components of the transmitted signal ∆ϕT (transmission

phase difference). Often, polarimetric weather radars use an arbitrary elliptical polarization

as the transmission phase difference ∆ϕT is not adjusted to a certain value.

First, it was decided to evaluate the hybrid mode with the transmission phase difference

∆ϕT adjusted to 0◦, i.e., linear polarization of the transmitted radiation. In the future, a

circular or elliptical polarization state of the transmitted signal can be easily implemented by

shifting ∆ϕT . Adjustable ferrite phase shifters for the peak power of 15 kW at Ka-band are

expensive and, in addition, introduce extra power losses, which will result in worse sensitivity.

Instead, in order to adjust the phase shift, the path length of the horizontal channel was

slightly changed by inserting throttle plates (see Fig. 4.2) between the waveguide flanges.

Changing of the transmission phase shift ∆ϕT only requires to insert throttle plates right

after the 3-dB coupler. In MIRA-35 the 3-dB coupler is installed inside the receiver unit

and cannot be easily reached. Thus, due to the construction design of MIRA-35, throttle

plates were inserted after the circulator #1 (see Fig. 4.1b). Introducing the additional phase

shift after the circulator leads to changes of the phase shift also in the receiving path ∆ϕR

(reception phase difference). The reception phase difference ∆ϕR can be removed during

processing (Sec. 4.3).

To characterize phase shifts induced by the radar hardware, a polarization basis should

be defined. In the description basis, the total phase difference between the horizontal and

vertical channels ∆ϕΣ measured in the configuration shown in Fig. 4.1b can be represented

as follows:

∆ϕΣ = ∆ϕtp + ∆ϕps︸ ︷︷ ︸
∆ϕT

+∆ϕbs + ∆ϕrp + ∆ϕps︸ ︷︷ ︸
∆ϕR

, (4.1)

where ∆ϕtp is the phase shift caused by the difference in the electrical path lengths between

the transmission channels, ∆ϕps is the phase shift introduced by the phase shifter, ∆ϕbs is

a. b. c.

Figure 4.2: Throttle plates used for the phase adjustment. The thickness of the plates is 0.05 mm

(a), 0.1 mm (b), and 0.28 mm (c). The introduced phase shift is 1.8◦ (a), 3.4◦ (b), and 9.1◦ (c).
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the phase shift produced by atmospheric scatterers, and ∆ϕrp is the phase shift caused by

differences in the electrical path lengths of the reception channels.

The phase shift ∆ϕrp was estimated based on previously documented antenna measure-

ments (see Chapter 3). For the measurements the external test transmitter described in

Chapter 3 was used. The test transmitter generates continuous linearly polarized radiation.

The frequency of the test transmitter was set close to the operational frequency of the radar

transmitter. The frequency of the radar local oscillator was adjusted to center the receiver

bandwidth to the signal of the test transmitter. The rotatable antenna system of the test

transmitter permits the change of the orientation β of the transmitted polarization with

respect to the unit vector eh of the description basis. The radar was placed approximately

40 m away from the test transmitter and was operated in the receiving-only mode. The an-

tennas of the radar and the test transmitter were pointed to each other. The measurement

procedure was the same as described in Chapter 3. The phase difference ∆ϕrp corresponds

to α3(0, 0) (see Eq. (3.18)). The measurement showed ∆ϕrp to be −2◦. Note that these

measurements were performed before introducing throttle plates.

Knowing ∆ϕrp, throttle plates were added into the horizontal channel in order to measure

the introduced phase shift. Plates with thicknesses of 0.28 mm, 0.1 mm, and 0.05 mm

(see Fig. 4.2) introduced phase shifts of 9.1◦, 3.4◦, and 1.8◦, respectively. It should be

noted that the wavelength in the waveguide λg is 10.8 mm, which is longer than the one in

vacuum [Marcuvitz , 1965, Ch. 2.2]. Calculated values of ∆ϕps for λg are 9.3◦, 3.3◦, and 1.7◦,

respectively.

It is known that randomly oriented particles do not produce a backscattering differential

phase shift [Trömel et al., 2013]. Therefore, for vertical observations of clouds without

electrical activity ∆ϕbs = 0 can be assumed. In this case, ∆ϕtp can be estimated from the

measured total phase difference ∆ϕΣ observed by the vertically pointed radar using Eq. (4.1).

Measurements performed without installed throttle plates resulted in ∆ϕΣ = −21.6◦ and,

thus, ∆ϕtp = −19.6◦. In order to adjust the transmission phase difference ∆ϕT as close to 0◦

as possible several throttle plates with a total thickness of ∼ 0.6 mm were inserted into the

horizontal channel. This introduced 20.5◦ of additional phase shift ∆ϕps and resulted in the

transmission phase difference ∆ϕT = −0.9◦ and the reception phase difference ∆ϕR = 18.5◦.

During the operation the frequency of the magnetron can vary with temperature within

±1 MHz. Such variations of the operational frequency cause changes of ∆ϕΣ. Measured

changes of ∆ϕΣ due to the frequency variation of the magnetron do not exceed ±1◦, which

can be considered as not significant. Nevertheless, during long-term operation variations

in ambient conditions led to changes of ±8◦ in ∆ϕrp. Significant changes in ∆ϕrp usually

took several days. To account for these changes, periodical vertical observations in light rain

(∆ϕbs = 0◦) are required. Then, assuming ∆ϕtp and ∆ϕps to be constant, ∆ϕrp can be

found using Eq. (4.1).
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4.2 Processing of the coherency matrix

MIRA-35 is a coherent cloud radar. Two receivers calculate in-phase (I) and quadrature (Q)

parts for vertical and horizontal components of the returned signal. Below, the horizontal

and vertical components are denoted by indexes h and v, respectively. Ih, Iv, Qh, and Qv

components are obtained for every pulse cycle and range gate. FFT over Ih + iQh and

Iv + iQv, calculated from NF pulses, is used to estimate discrete complex spectra Ṡh(ωk)

and Ṡv(ωk), respectively. Here ωk denotes a Doppler frequency of a spectral component

k = 0, ..., NF − 1:

ωk =
kfrπ

NF
, (4.2)

where fr is the pulse repetition frequency. Details of the I/Q and spectrum computation in

MIRA-35 data processing are given by Görsdorf et al. [2015].

Using Ns complex spectra Ṡh(ωk) and Ṡv(ωk), the spectral form of the 2 × 2 coherency

matrix can be written as

BBB(ωk) =

(
Bhh(ωk) Ḃhv(ωk)

Ḃvh(ωk) Bvv(ωk)

)
. (4.3)

The elements of the coherency matrix BBB(ωk) are calculated as follows:

Bhh(ωk) = 〈Ṡh(ωk)Ṡh(ωk)
∗〉, (4.4)

Ḃhv(ωk) = 〈Ṡh(ωk)Ṡv(ωk)
∗〉, (4.5)

Ḃvh(ωk) = 〈Ṡv(ωk)Ṡh(ωk)
∗〉, (4.6)

Bvv(ωk) = 〈Ṡv(ωk)Ṡv(ωk)∗〉, (4.7)

where 〈〉 denotes averaging over Ns spectra. The real elements Bhh(ωk) and Bvv(ωk) are the

power spectra in the horizontal and vertical channels, respectively. In MIRA-35 with LDR

mode these spectra represent the co- and cross-polarized components of the received signal,

respectively, and are used for the calculation of the radar reflectivity factor at horizontal

polarization Zh, mean Doppler velocity, Doppler width, and LDR [Görsdorf et al., 2015].

A recent modification of the MIRA-35 software permits one to additionally calculate and

store the complex element Ḃhv(ωk). It is necessary to note that Ḃhv(ωk) = Ḃ∗vh(ωk). There-

fore, storage of the element Ḃvh(ωk) is not required. Storing the elements Bhh(ωk), Ḃhv(ωk),

and Bvv(ωk) in usual operational mode (Table 3.1) requires approximately 700 MB/hr, which

is about 100 times less than storing the I/Q data.
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4.3 Correction of the coherency matrix for differences of channels

The spectral form of the coherency matrix BBB(ωk) allows for the calculation of spectral po-

larimetric variables. Advantages of such a representation have been shown for weather radar

applications [Spek et al., 2008]. Before the calculation of polarimetric parameters the ele-

ments of the coherency matrix BBB(ωk) were corrected for the effect of differential amplification

in the horizontal and vertical channels.

The spectral components ωn (n ∈ k) are defined where both Bhh(ωk) and Bvv(ωk) are

at least 30 dB higher than the mean noise levels Nh and Nv, respectively. The mean noise

levels can be determined by averaging the power spectra over the last range gates where

no scatterers are present or by applying the Hildebrand-Sekhon algorithm [Hildebrand and

Sekhon, 1974].

In order to correct for the difference in the amplifications a coefficient Ka is calculated:

Ka =
Bhh(ωn)−Nh

Bvv(ωn)−Nv
. (4.8)

For the calculation of Ka rain observations with the vertically pointed radar are used. In

this case, particles can be considered as spheres and do not change the polarization of the

scattered wave. Data containing scattering from insects, which typically cause depolarization,

should be avoided. For a rain event on 1 May 2014 a Ka value of 1.46± 0.02 was calculated.

The effect of differences in the amplifications and the electrical path lengths on the

components of Eq. (4.3) can be corrected as follows:

Ḃ′hv(ωk) =
√
KaḂhv(ωk)e

−i∆ϕR , (4.9)

B′vv(ωk) = KaBvv(ωk). (4.10)

The additional phase shift, introduced in Ḃ′hv(ωk), removes the reception phase difference

∆ϕR. The spectra Bhh(ωk), Bvv(ωk), and B′vv(ωk) are shown in Fig. 4.3. The coherency

matrix with the corrected elements is denoted as BBB′(ωk).

As mentioned in Sec. 4.1, the calibration of the receiver is slowly fluctuating during

operation. This causes variations of ±0.06 in Ka. The range of Ka can be constrained by

performing recalibrations during light rain.

4.4 Representation of the coherency matrix in the slanted basis

As it was shown in Chapter 3, the antenna coupling produces biases in polarimetic variables.

Such biases hamper shape and orientation retrievals. The antenna coupling can be directly

determined in LDR-mode cloud radars from vertical measurements in light rain or drizzle

when particles can be assumed to be spherical. In this case, the cross-polarized returned

signal is caused only by the coupling [Chandrasekar and Keeler , 1993]. In cloud radars
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with the hybrid mode the estimation of antenna effects is not straightforward as the major

part of the returned signal in both channels is produced by scatterers. In this section the

representation of the coherency matrix BBB′(ωk) in the polarization basis rotated by 45◦ with

respect to the description basis is shown. The Jones vector of a received signal in the

description and slanted basis is shown in Fig. 4.4. Such a representation provides the co-

polarized and cross-polarized components that would be measured by a cloud radar with

slanted polarimetric basis. These components can be used for the correction algorithm

proposed in Chapter 3. In addition, the change of the polarization basis makes it possible

to calculate SLDR and the cross-correlation coefficient in the slanted basis, which cannot be

directly measured in the hybrid mode.

The corrected coherency matrix BBB′(ωk) can be represented in the linear basis rotated by

45◦ with respect to the description basis:

BBBS(ωk) = FFFTRBBB
′(ωk)FFFR, (4.11)

where T is the transpose sign and FFFR is the rotational operator:

FFFR =
1√
2

(
1 1

−1 1

)
. (4.12)
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Figure 4.3: (a) Uncalibrated power spectra in the horizontal (blue line) and vertical (green line)

channels. Displayed observations were obtained with the vertically pointed radar in light rain. (b)

Uncalibrated power spectrum in the horizontal channel (blue line) and corrected power spectrum

in the vertical channel (green line). The same data as in (a) are used. Mean noise levels of Bhh

and B′vv, estimated using the Hildebrand-Sekhon algorithm, are 0.153 and 0.169, respectively.

Note, that this case was chosen to illustrate the correction. Due to low signal-to-noise ratios, such

spectra were not used for the calculation of the coefficient Ka (see Sec. 4.6).
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H

V
+45 (co)-45 (cross)

a. b.

Figure 4.4: The Jones vector of a received signal represented in the description (a) and slanted

(b) polarization basis.

The elements of BBBS(ωk) can be calculated as follows:

Bxx(ωk) =
1

2

{
Bhh(ωk) +B′vv(ωk)− 2Re

[
Ḃ′hv(ωk)

]}
, (4.13)

Ḃxc(ωk) =
1

2

{
Bhh(ωk)−B′vv(ωk) + 2iIm

[
Ḃ′hv(ωk)

]}
, (4.14)

Bcc(ωk) =
1

2

{
Bhh(ωk) +B′vv(ωk) + 2Re

[
Ḃ′hv(ωk)

]}
. (4.15)

In the slanted basis the indexes c and x are used to denote the co-polarized and cross-

polarized components, respectively. Note that these components would be directly measured

by a cloud radar with the slanted polarimetric basis.

The coherency matrix BBBS(ωk) can be considered as the coherency matrix measured in the

slanted linear depolarization mode (SLDR mode), which was used for the shape classification

by Matrosov et al. [2012]. In SLDR mode and hybrid mode with transmission phase difference

∆ϕT = 0◦ the transmitted signals have the same polarization state. The difference between

these polarimetric configurations is the 45◦ rotation of the receiving basis as performed

in Eq. (4.11). Note that Eq. (4.11) allows for the representation of the coherency matrix

measured in the SLDR mode in the horizontal-vertical basis and, thus, can be used to retrieve

polarimetric variables such as ZDR and ρhv.

For the subsequent data analysis spectral components ωp, where the backscattered signal

is detected in the elements Bcc(ωk) and Bxx(ωk), are defined. The threshold applied for the

detection is calculated as follows:

BTc,Tx = Nc,x

(
1 +

Q√
Ns

)
. (4.16)

In Eq. (4.16) Nc,x is the mean power of noise of Bcc(ωk) and Bxx(ωk), respectively. The

value of Q = 5, which is applied for the thresholding in the operational MIRA-35 radars

[Görsdorf et al., 2015], is used.

Further, the mean noise levels are removed from the elements Bcc(ωp) and Bxx(ωp):

B′cc(ωp) = Bcc(ωp)−Nc, (4.17)

B′xx(ωp) = Bxx(ωp)−Nx. (4.18)
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The correlation between noise in the orthogonal components is negligible and, thus, does not

influence the element Ḃxc(ωp) significantly. The resulting coherency matrix is represented as

follows:

BBB′S(ωp) =

(
B′xx(ωp) Ḃxc(ωp)

Ḃ∗xc(ωp) B′cc(ωp)

)
. (4.19)

4.5 Correction of the coherency matrix for the antenna coupling

In analogy to Eqs. (3.31)–(3.36) the coherency matrix BBB′S(ωp) is decomposed into non-

polarized and fully-polarized parts:

BBB′S(ωp) = AS(ωp)III +

(
BS(ωp) ḊS(ωp)

Ḋ∗S(ωp) CS(ωp)

)
, (4.20)

with the condition:

BS(ωp)CS(ωp)− |ḊS(ωp)|2 = 0. (4.21)

AS(ωp), BS(ωp), CS(ωp), and ḊS(ωp) can be calculated with the following equations

[Kanareykin et al., 1966; Born and Wolf , 1975]:

AS(ωp) =
1

2

(
Sp
[
BBB′S(ωp)

]
−
{

Sp2
[
BBB′S(ωp)

]
− 4 det

[
BBB′S(ωp)

]}1/2
)
, (4.22)

BS(ωp) =
1

2

(
B′xx(ωp)−B′cc(ωp) +

{
Sp2

[
BBB′S(ωp)

]
− 4 det

[
BBB′S(ωp)

]}1/2
)
, (4.23)

CS(ωp) =
1

2

(
B′cc(ωp)−B′xx(ωp) +

{
Sp2

[
BBB′S(ωp)

]
− 4 det

[
BBB′S(ωp)

]}1/2
)
, (4.24)

ḊS(ωp) = Ḃxc(ωp). (4.25)

Applying the method described in Chapter 3, the influence of antenna coupling on the el-

ements AS(ωp), BS(ωp), and CS(ωp) is removed. Note that in this chapter the fully-polarized

part of the co-polarized component is described by CS(ωp). The calculated variables are

denoted as A′S(ωp), B
′
S(ωp), and C ′S(ωp), respectively. The corrected value Ḋ′S(ωp) can be

found using B′S(ωp) and C ′S(ωp) in Eq. (4.21). Reverse rotation of the slanted basis allows

for the calculation of the elements A(ωp), B(ωp), and C(ωp) in the description basis:

A(ωp) = A′S(ωp), (4.26)

B(ωp) = 0.5

(
B′S(ωp) + C ′S(ωp) + 2Re

{√
B′S(ωp)C ′S(ωp)e

i arg [ḊS(ωp)]
})

, (4.27)

C(ωp) = 0.5

(
B′S(ωp) + C ′S(ωp)− 2Re

{√
B′S(ωp)C ′S(ωp)e

i arg [ḊS(ωp)]
})

. (4.28)
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4.6 Spectral polarimetric variables

From A(ωp), B(ωp), and C(ωp) spectral polarimetric variables can be obtained. In the

following, the word “spectral” is omitted for brevity. Differential reflectivity ZDR(ωp), corre-

lation coefficient ρhv(ωp), differential phase shift ΦDP (ωp), SLDR(ωp), and cross-correlation

coefficient ρs(ωp) in the slanted basis are defined as follows:

ZDR(ωp) =
A(ωp) +B(ωp)

A(ωp) + C(ωp)
, (4.29)

ρhv(ωp) =

{
B(ωp)C(ωp)

[A(ωp) +B(ωp)][A(ωp) + C(ωp)]

}1/2

, (4.30)

ΦDP (ωp) = arg
[
Ḃ′hv(ωp)

]
, (4.31)

SLDR(ωp) =
A′S(ωp) +B′S(ωp)

A′S(ωp) + C ′S(ωp)
, (4.32)

ρs(ωp) =

{
B′S(ωp)C

′
S(ωp)

[A′S(ωp) +B′S(ωp)][A′S(ωp) + C ′S(ωp)]

}1/2

. (4.33)

In order to check the quality of the polarimetric measurements of MIRA-35 in hybrid

mode, vertical-stare measurements of a cloud system, which passed over the METEK site

on 1 May 2014, were performed. Figure 4.5 shows SNR (a) and the polarimetric variables

(b–f) derived with Eqs. (4.29)–(4.33), respectively. The presented parameters were obtained

for the spectral line at which the maximum signal was observed. From 17:45 to 18:00 UTC

a melting layer is visible at 1.7 km height, indicated by enhanced values of SNR and SLDR.

Below the melting layer light rain occurred, whereas ice crystals were present above. The

comparison of Fig. 4.5 (b–f) with (a) shows that the polarimetric parameters could not be

obtained for all data points because the quality criterion of Eq. (4.16) is not fulfilled when

SNR is too low. At lower SNR, the influence of noise becomes significant resulting in high

biases and variability in all polarimetric variables.

It can be seen in Fig. 4.5b and 4.5d that on average values of ZDR and ΦDP in clouds

and precipitation are close to 0 dB and 0◦, respectively, which is the case when particles can

be considered as spheres or randomly oriented in the polarization plane. Areas with slightly

increased values of ZDR and ΦDP are caused by noise, as these areas are in correlation with

decreasing SNR especially along cloud edges. Insects are characterized by values of ZDR and

ΦDP that lie outside of the colorbars.

In rain, the correlation coefficient ρhv is 1, which is consistent with high values of this

parameter observed by polarimetric weather radars [Mudukutore et al., 1995; Wang et al.,

2006]. Slightly lower values of about 0.995 were observed in areas with ice particles producing

weak depolarization. In the highly depolarizing melting layer ρhv is below 0.95.

Values of SLDR measured vertically in rain, in the melting layer, in ice areas, and in

regions dominated by scattering from insects are consistent with direct measurements of
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Figure 4.5: Time-height cross section of the signal-to-noise ratio in the horizontal channel (a),

differential reflectivity ZDR (b), correlation coefficient ρhv (c), differential phase shift ΦDP (d),

slanted linear depolarization ratio SLDR (e), and cross-correlation coefficient ρs in the slanted

basis for the measurements taken at Elmshorn, Germany, on 1 May 2014.

LDR [Lohmeier et al., 1997; Di Girolamo et al., 2012; Görsdorf et al., 2015]. Values of ρs for

meteorological scatterers are 0, as it follows from theoretical considerations given in Sec. 3.2.

Insects can be considered as point depolarizing targets and therefore produce high ρs (see

Sec. 3.3).

Polarimetric variables obtained for the time period from 17:55 to 18:00 UTC and the

height range from 500 m to 1700 m, where light rain was observed, are close to those that

would be measured in rain by a hypothetical ideal radar, i.e., ZDR = 1 (0 dB), ΦDP = 0◦,

ρhv = 1, SLDR= 0 (−∞ dB), and ρs = 0 (in the limit approximation given in Sec. 3.2). For

comparison and estimation of the antenna quality, values of polarimetric parameters without

the correction for antenna coupling are shown in Table 4.1. These variables were calculated

by inserting the elements AS(ωp), BS(ωp), and CS(ωp) instead of A′S(ωp), B
′
S(ωp), and C ′S(ωp)

in Eqs. (4.26)–(4.33).
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Table 4.1: Polarimetric variables calculated without the correction for the antenna coupling and

those that would be observed by an hypothetical ideal radar. Values are based on measurements

with the vertically pointed cloud radar in light rain on 1 May 2014 that is shown in Fig. 4.5. The

statistics are based on the height range from 500 to 1700 m and the time period from 17:55 to

18:00 UTC.

Variable Mean value Standard deviation Theoretical value

ZDR 1.011 (0.048 dB) 0.017 1 (0 dB)

ρhv 0.9976 4.8× 10−4 1

ΦDP −0.16◦ 0.35◦ 0◦

SLDR 1.2× 10−3 (−29.3 dB) 2.2× 10−4 0 (−∞ dB)

ρs 0.089 0.046 0

4.7 Sensitivity issue

Splitting the transmitting power into two channels in the hybrid mode worsens the radar

sensitivity by 3 dB. In the case when only power spectra Bhh(ωk) and Bvv(ωk) are available,

non-coherent averaging can recover up to 1.5 dB [Skolnik , 1980]. The availability of the full

coherency matrix permits the application of coherent averaging based on Eq. (4.15), which

can potentially improve the radar sensitivity by up to 3 dB. Thus, the sensitivity loss due to

splitting can be balanced out by the sensitivity gain due to coherent averaging. Applicability

of the coherent averaging to weather radars was previously shown by Melnikov et al. [2011].

Coherent averaging can be applied when the received signals in the horizontal and vertical

channels are in-phase. In the case of elliptical or circular polarization of the transmitted signal

an additional phase shift can be introduced during processing to fulfill this requirement. As

shown in Sec. 4.1, in our case the transmission phase difference is ∆ϕT = −0.9◦, which is

considered to be sufficiently low to neglect effects of the phase difference on SNR.

In Fig. 4.3b it can be seen that the mean noise levels in the receiving channels are

different. This can hamper the procedure of increasing the sensitivity. Therefore, the mean

noise levels were adjusted using the coefficient Kn:

Kn =
Nh

Nv
. (4.34)

For the rain case on 1 May 2014 Kn was found to be 1.32± 0.14. Long-term fluctuations of

Kn are of the same order of magnitude as for Ka. Using Kn instead of the coefficient Ka in

Eqs. (4.9) and (4.10), the elements Bvv(ωk) and Ḃhv(ωk) were corrected for different noise

levels, which were then inserted into Eq. (4.15) to perform the coherent averaging.

Another factor that can affect the utilization of Eq. (4.15) is the differential phase shift

introduced by the propagation and backscattering properties of the scatterers. As mentioned

in Sec. 4.1, the orientation of particles can be assumed to be distributed uniformly in the
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Figure 4.6: Power spectrum in the horizontal channel (blue line) and power spectrum after

coherent averaging (green line). The same data as in Fig. 4.3 are used.

polarization plane when the radar is pointed vertically. In this case, both backscattering

and propagation differential phase shift are 0. Nevertheless, differential phase effects should

be accounted for in the case of utilization of the 35-GHz cloud radar at low elevations for

precipitation observations. For instance, Matrosov et al. [1999] showed that at 35 GHz the

propagation and backscattering differential phase shifts in rain stronger than 5 mm/hr can

exceed 1◦/km and 5◦, respectively. In this thesis a correction for the differential phase shift

introduced by scatterers is not considered.

The results of Eq. (4.15) are shown in Fig. 4.6 for an arbitrary example case. It can be

seen that Bcc(ωk) has about two times higher signal power than Bhh(ωk), while the standard

deviations of noise are 0.01 and 0.011 (arbitrary units), respectively. The noise levels of

Bcc(ωk) and Bhh(ωk) are the same. The power spectra Bcc(ωk) can be used for the standard

processing, i.e., for the detection and the estimation of spectral moments. In this case, the

total power transmitted by the radar instead of the power transmitted in the horizontal

channel should be used for the calculation of reflectivity.

In Fig. 4.7 the height-time cross sections of SNR calculated from Bhh(ωk) and Bcc(ωk) are

shown. For the thresholding and the SNR calculation the standard processing implemented

in MIRA-35 cloud radar [Görsdorf et al., 2015] was used. It can be seen that the coherent

averaging results in more data points, which is especially of benefit for the detection efficiency

of high-level clouds.
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Figure 4.7: Time-height cross sections of signal-to-noise ratios calculated from Bhh (a) and Bcc

(b) measured at Elmshorn, Germany, on 1 May 2014. The amount of data points (especially in

high-level clouds) in panel (b) is higher in comparison with (a) because of higher sensitivity.
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Chapter 5

Shape and orientation retrieval

In the previous chapter the implementation of the hybrid-mode cloud radar was described,

which enables a registration of a set of polarimetric variables. Based on these polarimetric

variables the current chapter presents an experimental quantitative characterization of the

shape and orientation distribution of ice particles in clouds. The characterization utilizes

measured and modeled elevation dependencies of the polarimetric parameters differential

reflectivity and correlation coefficient. The approach presented in the following is based on a

combination of established spheroidal models [Matrosov , 1991a; Ryzhkov , 2001; Bringi and

Chandrasekar , 2001] that were developed to describe the polarimetric variables. The modeled

parameters are polarizability ratio and degree of orientation, which can be assigned to certain

particle orientations and shapes. The developed algorithm is applied to a measurement of

the hybrid-mode cloud radar taken in the framework of the ACCEPT campaign at Cabauw,

the Netherlands, on 20 October 2014. The material in this chapter is based on Myagkov

et al. [2016a]. The modeling of polarimetric variables is explained in Sec. 5.1. The approach

for the retrieval of the shape and orientation distribution is presented in Sec. 5.2. A case

study showing the application of the method is discussed in Sec. 5.3.

5.1 Backscattering model

It is known that particles with sizes much smaller than the wavelength of a radar can be

approximated by a spheroid. Matrosov [2015] shows that this approximation is valid in

the case of ice-particle observations with cloud radars. Scattering properties of a spheroid

are often described using the Jones representation in a linear polarization basis by a 2×2

backscattering matrix:

SSS =

(
Ṡhh Ṡhv

Ṡvh Ṡvv

)
. (5.1)
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The elements of the backscattering matrix SSS are calculated as follows [Bringi and Chan-

drasekar , 2001, Ch. 2]:

Ṡhh =
k2

0

4πε0

[
p1 + (p2 − p1) sin2 θp sin2 ϕp

]
, (5.2)

Ṡhv = Ṡvh =
k2

0

4πε0

[
(p2 − p1)

2

(
cosψ sin2 θp sin 2ϕp + sinψ sin 2θp sinϕp

)]
, (5.3)

Ṡvv =
k2

0

4πε0

[
p1 + (p2 − p1)

(
cos2 ψ sin2 θp cos2 ϕp + sin2 ψ cos2 θp +

sin 2ψ sin 2θp cosϕp
2

)]
,

(5.4)

where k0 is the wavenumber, ε0 is the vacuum permittivity, and ψ is the angle between the

unit vector ez (see Fig. 3.1) and the zenith direction. The angle ψ is further denoted as

the elevation angle. θp and ϕp are angles defining the orientation of the spheroid, which is

illustrated in Fig. 5.2. p1,2 are polarizability elements:

p1,2 = V ε0 (εr − 1) Λ1,2. (5.5)

In Eq. (5.5) V is the volume of the spheroid, εr is the relative permittivity, and Λ1,2 can be

found as follows:

Λ1,2 =
1

(εr − 1) d1,2 + 1
, (5.6)

where d1,2 are depolarizing factors. The depolarizing factors for prolate and oblate spheroids

are described as follows:

d2(prolate) =
1− b2

b2

(
−1 +

1

2b
ln

1 + b

1− b

)
; b2 = 1−

(
1

ξg

)2

, ξg ≥ 1, (5.7)

d2(oblate) =
1 + f2

f2

(
1− 1

f
tan−1 f

)
; f2 =

(
1

ξg

)2

− 1, 0 < ξg ≤ 1, (5.8)

d1 =
1− d2

2
. (5.9)

In Eqs. (5.7) and (5.8) ξg is the axis ratio of the spheroid, which is defined as shown in

Fig. 5.1.

In the following, only ice particles are considered. In the microwave region the real part

of εr for pure ice is approximately 3.168. The imaginary part is several orders of magnitude

lower than the real part [Ray , 1972] and, therefore, it is neglected. In this case, the elements

of the backscattering matrix SSS are real numbers.

Further, the polarizability ratio is defined as:

ξe =
p2

p1
. (5.10)

ξe is a function of permittivity and axis ratio ξg and is independent of particle volume V .

As it was shown in the review of Oguchi [1983], the permittivity and apparent density of
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c (symmetry axis)
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c (symmetry axis)

Prolate spheroid 
(ξg = c/a > 1)

Oblate spheroid 
(ξg = c/a < 1)

Figure 5.1: Geometry of prolate and oblate spheroids.
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Figure 5.2: Geometry of spheroid orientation, adopted from Matrosov [1991a]. The description

polarization basis is shown for the case of ψ = 0◦. ON is the symmetry axis of the spheroid.

ice crystals are related almost linearly. Apparent ice density ρa characterizes the ratio of ice

and air within the approximating spheroidal particle (see Fig. 5.3). Numerical values of ξg

and ρa for ice crystals are considered in more details in Chapter 6. The relationship between

ξe, ξg, and ρa is shown in Fig. 5.4.

The backscattering matrix of N particles dispersed in a certain volume can be written
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as follows:

SSSΣ =
N∑
j=1

SSSje
2ik0rj , (5.11)

where SSSj and rj are the backscattering matrix and the distance of the j-th particle from the

radar, respectively. Assuming complex amplitudes of the horizontal and vertical components

of the transmitted signal Ėth = Ėtv = 1, the polarization state corresponds to the one of a

wave emitted by an ideal hybrid-mode radar with a transmission phase difference ∆ϕT = 0◦.

The complex amplitudes of the horizontal Ėh and vertical Ėv components of the received

a b

Figure 5.3: Schematic images of a hexagonal plate (a) and a dendrite (b) circumscribed by

spheroids. The hexagonal plate covers the major part of the spheroid’s volume and is characterized

by high apparent ice density. The dendrite is characterized by low apparent ice density because

the approximating spheroid is mainly filled with air.

0.01 0.1 1 10 100

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.916 g/cm3

0.8 g/cm3

0.6 g/cm3

0.4 g/cm3

0.2 g/cm3

Axis ratio ξg

P
ol

ar
iz

ab
ili

ty
 r

at
io

 ξ
e

App. ice density

Figure 5.4: Dependency of polarizability ratio ξe on axis ratio ξg of a spheroid for different

apparent ice densities ρa.
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signal can be derived as follows:

Ėh =
(
Ṡhh

)
Σ
Ėth +

(
Ṡhv

)
Σ
Ėtv, (5.12)

Ėv =
(
Ṡhv

)
Σ
Ėth +

(
Ṡvv

)
Σ
Ėtv, (5.13)

where
(
Ṡhh

)
Σ

,
(
Ṡhv

)
Σ

,
(
Ṡvh

)
Σ

, and
(
Ṡvv

)
Σ

are the elements of the backscattering matrix

SSSΣ.

The implementation of the subsequent modeling approach is based on the following as-

sumptions:

1. V , θp, ϕp, ξg are not correlated with each other.

2. All particles have the same axis ratio ξg.

3. ϕp is uniformly distributed in the range from −π to π.

4. The scattering is non-coherent.

5. Multiple scattering is neglected.

6. Propagation effects such as differential attenuation and specific differential phase shift

are neglected.

It is assumed that particles falling with the same terminal velocity have comparable size,

shape, and apparent ice density. In this case, the first two assumptions are reasonable when

polarimetric variables for a certain spectral line are modeled.

Under all above-mentioned assumptions the elements of the coherency matrix can then

be found as follows:

B̂hh = 〈ĖhĖ∗h〉 = F1 (1 + P1T1 + F2P2T1 + F3P2T2) , (5.14)

B̂vv = 〈ĖvĖ∗v〉 = F1 (1 + F4P1 + F5P1T1 + F6P2 + F7P2T1 + F8P2T2) , (5.15)

B̂hv = 〈ĖhĖ∗v〉 = F1 (1 + F9P1T1 + F10P1 + F10P2T1 + F11P2T2) . (5.16)
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In Eqs. (5.14)–(5.16) the following parameters are used:

F1 = N〈p1〉
(

k2
0

4πε0

)2

, (5.17)

F2 =
1

2
sin2 ψ, (5.18)

F3 =

(
4− 5 sin2 ψ

)
8

, (5.19)

F4 = 4F2, (5.20)

F5 = cos2 ψ − 2 sin2 ψ, (5.21)

F6 = sin4 ψ, (5.22)

F7 =
7

2
sin2 ψ − 5 sin4 ψ, (5.23)

F8 =
1

2
− 35

8
sin2 ψ +

35

8
sin4 ψ, (5.24)

F9 =
1

2
+

1

2
F5, (5.25)

F10 = 2F2, (5.26)

F11 =
1

4
cos2 ψ − sin2 ψ, (5.27)

P1 = ξe − 1, (5.28)

P2 = (ξe − 1)2 , (5.29)

T1 = 〈sin2 θp〉, (5.30)

T2 = 〈sin4 θp〉. (5.31)

Averaging in Eqs. (5.17), (5.30), and (5.31) is performed over N particles.

The probability density function of orientation angle θp is modeled by using the function

adopted from Kanareykin et al. [1966]:

W (Θ) =
1−R2

2π

[
1

1−R2 cos2 2Θ
+R cos 2Θ

π
2 + arcsin (R cos 2Θ)

(1−R2 cos2 2Θ)3/2

]
, −π

2
≤ Θ ≤ π

2
, (5.32)

where R is a factor defining the width of the distribution and Θ = θp− θ0, with θ0 being the

preferable orientation of particles. The preferable orientation is considered to be horizontal,

i.e., θ0 = 0 for oblate spheroids and θ0 = π/2 for prolate spheroids, which is consistent with

Mitchell [1996]. The advantage of using Eq. (5.32) is that it permits us to model a variety

of cases, including a Delta-distribution (R = 1) as well as uniform (R = 0) and fully chaotic

distributions. In Fig. 5.5 W (Θ) for different values of R is shown.
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Figure 5.5: Probability density function of Θ for different values of R. Adopted from Kanareykin

et al. [1966].

Using Eqs. (5.30)–(5.32) the parameters T1 and T2 can be calculated as follows:

T1 =

π/2∫
−π/2

sin2(Θ + θ0)W (Θ)dΘ, (5.33)

T2 =

π/2∫
−π/2

sin4(Θ + θ0)W (Θ)dΘ. (5.34)

The calculated values of T1 and T2 are shown in Fig. 5.6. For further analysis it is conve-

nient to use the degree of orientation κ, introduced in Hendry et al. [1976]. The degree of

orientation κ is related to the parameter T1 as follows:

κ = 1− 2T1. (5.35)

Hendry et al. [1976] considered κ only for θ0 = 0, for which κ lies in the range from 0 to 1.

In the case θ0 = π/2 values of κ are in the range from −1 to 0. Thus, the absolute value of

κ represents the degree of orientation, while the sign indicates the preferable orientation of

the symmetry axis (either vertical or horizontal, see Figs. 5.1 and 5.2).
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Figure 5.6: Dependency of T1 and T2 on R for oblate and prolate spheroids.

Finally, the polarimetric variables can be calculated from Eqs. (5.14)–(5.16):

ẐDR =
B̂hh

B̂vv
, (5.36)

ρ̂hv =
|B̂hv|√
B̂hhB̂vv

, (5.37)

ŜLDR =
B̂hh + B̂vv − 2Re

(
B̂hv

)
B̂hh + B̂vv + 2Re

(
B̂hv

) , (5.38)

ρ̂s =
|B̂hh − B̂vv + 2iIm

(
B̂hv

)
|√[

B̂hh + B̂vv − 2Re
(
B̂hv

)] [
B̂hh + B̂vv + 2Re

(
B̂hv

)] . (5.39)

Here, the ∧-sign indicates that the parameters are modeled.

5.2 Retrieval technique

Melnikov and Straka [2013] proposed a shape and orientation retrieval algorithm based on

ZDR and ρhv observed by a weather radar. The authors showed that the algorithm is

applicable for cloud areas with ZDR > 4 dB, where the backscatter signal is dominated by

oblate particles. When ZDR < 4 dB the algorithm cannot distinguish between oblate and

prolate particles.



5.2. RETRIEVAL TECHNIQUE 67

Matrosov [1991a] and Matrosov et al. [2012] showed that an appropriate classification of

ice particles in clouds requires scanning over the elevation angle. Therefore, the shape and

orientation retrieval described below requires measurement of differential reflectivity and

correlation coefficient in dependence on elevation angle. During the ACCEPT campaign,

elevation scans from −60◦ to 60◦ were performed (0◦ corresponds to the zenith pointing).

Natural obstacles at the measurement site limited scanning at lower elevation angles. Thus,

from every scan cycle two half-scans are available for the shape classification.

By using Eqs. (5.36) – (5.39) look-up tables of ẐDR(κ, ψ, ξe), ρ̂hv(κ, ψ, ξe), ŜLDR(κ, ψ, ξe),

and ρ̂s(κ, ψ, ξe) can be calculated. Values from −1 to 1 for κ, from −60◦ to 60◦ for ψ, and

from 0.3 to 2.3 for ξe are used. The chosen range of ξe covers the possible values for ice shown

in Fig. 5.4. The cross-sections of modeled polarimetric variables are presented in Fig. 5.7.

Left and right columns in Fig. 5.7 represent elevation angles ψ of 60◦ and 0◦, respectively.

Values of κ = −1 (upper part of diagrams) characterize particles with horizontally oriented

symmetry axis; κ = 0 is typical for uniformly distributed orientation angles θp; κ = 1 (lower

part of diagrams) describes a vertically oriented symmetry axis of particles. It should be

noticed that κ ∼ −0.4 specifies the so-called fully chaotic orientation of particles [Ryzhkov ,

2001], which can be considered as a special case of reflection symmetry [Nghiem et al., 1992].

In this case, the polarimetric variables do not depend on ψ, and ZDR and ρs are 0 dB and 0,

respectively. Values of ξe < 1 designate oblate particles; ξe = 1 represents spherical particles

or particles with low density; ξe > 1 correspond to prolate particles (see Fig. 5.4).

In Fig. 5.7a ZDR is larger than 0 dB in the lower left and in the upper right corners of

the diagram. These corners correspond to horizontally aligned oblate and prolate particles,

respectively. In contrast, in the upper left and in the lower right corners particles are oriented

vertically and thus produce ZDR lower than 0 dB. Additionally, oblate particles can produce

larger ZDR than prolate ones, in agreement with Hogan et al. [2002] and Melnikov and

Straka [2013]. For zenith pointing (Fig. 5.7b) ZDR values are 0 dB because of the reflection

symmetry [Nghiem et al., 1992]. Figs. 5.7c and d show that ρ̂hv is equal to 1 for spherical

and horizontally aligned oblate particles. At ψ = 60◦ values of ρ̂hv decrease with decreasing

|κ|. This behavior is especially noticeable for particles with ξe < 0.5 and ξe > 1.8. The

relation between ρ̂hv and |κ| is consistent with the findings of Matrosov [1991b]. Fig. 5.7e

shows that values of ŜLDR are dominated by ξe and only slightly depend on κ. This feature

was previously described in Reinking et al. [2002] and Matrosov et al. [2012]. Galletti and

Zrnic [2012] showed that in hybrid mode at zenith pointing ρ̂hv is equal to the degree of

polarization. In this case, ŜLDR and ρ̂hv can be related as follows:

ρ̂hv ∼ 1− 2ŜLDR. (5.40)

The relation given by Eq. (5.40) can be clearly seen in Figs. 5.7d and f. Fig. 5.7g shows that

ρ̂s is mostly defined by κ, i.e. by the orientation of particles. This was previously found
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Figure 5.7: Modeled differential reflectivity ẐDR (a,b), correlation coefficient ρ̂hv (c,d), slanted

linear depolarization ratio ŜLDR (e,f), and cross-correlation coefficient in the slanted basis ρ̂s

(g,h).
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by Ryzhkov et al. [2002]. For spherical particles (ξe = 1) the limit approximation ρ̂s = 0

[Myagkov et al., 2015] is used. As mentioned above ρ̂s is equal to 0 in the case of reflection

symmetry, i.e., when ψ = 0◦ (Fig. 5.7h).

In Chapter 4 it was shown that pairs of polarimetric variables ZDR and ρhv, and SLDR

and ρs characterize the same received wave in the Cartesian and slanted polarization basis,

respectively. Thus, ZDR and ρhv can be calculated from SLDR and ρs and vice versa.

Therefore, the full set of four polarimetric variables is not necessary. In this thesis ZDR and

ρhv were chosen for the retrieval. Nevertheless, the same approach can be applied to SLDR

and ρs, which can be measured directly by cloud radars operating in SLDR mode.

The Doppler velocity measured by a cloud radar is defined not only by the terminal

velocity of particles but also by air motion. Thus, Doppler spectra measured at different

elevation angles usually have different shapes and mean values. In the following, it is however

assumed that the spectrum maximums (spectrum peaks), measured at a certain altitude and

at different elevation angles, correspond to particles of similar microphysical properties.

Due to the spatial inhomogeneity of a cloud or in the case of low SNR, some data points

in a half-scan can be missing. Also some altitudes cannot be reached by the radar at certain

elevation angles. Therefore, the algorithm is only applied to altitudes where more than 50 %

of the data points of polarimetric variables in a half-scan are present.

For simplicity, the retrieval is described for one altitude only. Denotations ZDR(ψ) and

ρhv(ψ) correspond to differential reflectivity and correlation coefficient calculated for the

maximum spectral line at elevation angle ψ, respectively. Using the measured polarimetric

variables and the look-up tables of modeled values, the following error functions are calcu-

lated:

EZDR(κ, ξe) =

∫
Ψ

∣∣∣ZDR(ψ)− ẐDR(κ, ψ, ξe)
∣∣∣2 dψ, (5.41)

ERHV (κ, ξe) =

∫
Ψ

|ρhv(ψ)− ρ̂hv(κ, ψ, ξe)|2 dψ, (5.42)

where Ψ represents elevation angles ψ for a certain half-scan. Eqs. (5.8) and (5.7) show that

prolate and oblate particles have different scattering properties and therefore a quantitative

characterization implies knowledge of the predominant shape. In order to classify particles

as either prolate or oblate the minimum of EZDR(κ, ξe) is searched. Values of κ and ξe

with corresponding EZDR(κ, ξe) that do not exceed the minimum EZDR by a factor of 1.1

are defined. For these values of κ and ξe the lowest value of ERHV (κ, ξe) is determined.

In the case when the minimum of ERHV corresponds to ξe ≤ 1, particles are classified as

oblate spheroids. Otherwise, the particles are prolate spheroids. It should be noted that

without the correction for the antenna coupling (see Sec. 4.5) the algorithm cannot reliably

discriminate spheroids with polarizability ratios in the range from 0.8 to 1.2.
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After the classification ξe and κ for every elevation angle within ranges from 30◦ to 60◦

and from −60◦ to −30◦ are determined. These ranges have been chosen considering the

fact that polarimetric variables do not allow for a reliable discrimination between different

properties of particles at elevation angles close to the zenith. Further, the following error

function is calculated:

Es(κ, ψ, ξe) =
∣∣∣ZDR(ψ)− ẐDR(κ, ψ, ξe)

∣∣∣2 + [10 |ρhv(ψ)− ρ̂hv(κ, ψ, ξe)|]2 . (5.43)

The weighting factor in Eq. (5.43) has not been optimized. It was set to 10 considering that

errors in ZDR are about one order of magnitude higher than errors in ρhv. For every elevation

angle ψ values of ξe and κ, corresponding to the minimum of the function Es(κ, ψ, ξe), are

found. It is emphasized that the retrieval allows for the estimation of the polarizability ratio

ξe. The estimation of the exact axis ratio ξg from ξe requires knowledge of the apparent

density (see Fig. 5.4) of ice crystals, which has to be assumed or measured.

5.3 Case study

In this section a case study is presented to demonstrate the applicability of MIRA-35 with

hybrid mode for the particle classification technique described above. The dataset was ac-

quired during the ACCEPT campaign, which was conducted at Cabauw, the Netherlands,

in October and November 2014. The campaign is described in more detail in Chapter 6.

Throughout the ACCEPT campaign the radar was operated with the number of averaged

spectra Ns = 20, which corresponds to an averaging time of 1 s. A scan cycle that was

performed by the hybrid-mode MIRA is shown in Fig. 5.8. Within the 15-min period the

radar performed two elevation scans from −60◦ to 60◦ at an angular speed of 0.5 ◦s−1. The

two scans were conducted perpendicular to each other in azimuth direction. Other details of

the scan cycle are not related to this thesis and are not considered.

In Fig. 5.9 range-altitude cross sections of SNR, differential reflectivity, and correlation

coefficient calculated for the maximum spectral lines are shown. These observations were

taken in one azimuth plane from 18:16 to 18:20 UTC on 20 October 2014. Two cloud layers

at 2.7–3.5 km and 4.0–5.2 km height are visible. These layers are denoted as 1 and 2,

respectively. Between the layers a clear gap is present, thus seeding of ice crystals from the

upper layer into the lower layer [Rutledge and Hobbs, 1984] can be assumed to be absent.

In Figs. 5.10 and 5.11 a detailed analysis of the case introduced in Fig. 5.9 is presented

for altitudes of 3.0 and 4.7 km (layer 1 and 2), respectively. Well-pronounced elevation

dependencies of the differential reflectivity can be seen for both layers. At elevation angles

of |ψ| = 60◦ the differential reflectivity reaches values of ∼ 3 dB and ∼ 5 dB for the layers

1 and 2, respectively. In vertical pointing direction (|ψ| = 0◦) the differential reflectivity is
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Figure 5.8: One period of the scan cycle of the hybrid-mode MIRA used during the ACCEPT

campaign. Azimuth angles are given with respect to the north direction. Elevation angle of 0◦

corresponds to the zenith.

close to 0.5 dB and 0 dB, respectively. Thus, for both layers the differential reflectivity has

its minimal value at 0◦ elevation and increases at higher |ψ|.

In contrast to the differential reflectivity, the elevation dependencies of the correlation

coefficient have different behavior for layers 1 and 2 (Figs. 5.10b and 5.11b). In layer 1 ρhv

has its minimum at |ψ| = 0◦, whereas it shows increased values at higher |ψ|. In layer 2 ρhv

has a maximum at |ψ| = 0◦, while at higher |ψ| the values of ρhv are slightly lower.

Figs. 5.10c and d and 5.11c and d show the error functions EZDR(κ, ξe) and ERHV (κ, ξe),

respectively. The algorithm described in Sec. 5.2 is used to distinguish between oblate and

prolate particles at a certain altitude. The polarizability ratio determined using Figs. 5.10c

and d is ∼ 1.6, while the one from Figs. 5.11c and d is ∼ 0.4. Thus, the spheroid types of the

ice particles observed in layer 1 (3.0 km) and 2 (4.7 km) are classified as prolate and oblate,

respectively.

After the classification of the spheroid type the polarizability ratio ξe and the degree of

orientation κ are retrieved for every elevation angle in the range from 30◦ ≤ |ψ| ≤ 60◦. Using

the obtained values mean and standard deviation of ξe and κ are calculated for every altitude.

Standard deviations of ξe and κ characterize differences of the corresponding parameters

for particle populations observed at different elevation angles. In order to estimate the

influence of uncertainties in ZDR and ρhv on the retrieval of ξe, we applied the algorithm to

measurements in light rain on 7 November 2015, from 20:30 to 21:00 UTC. The precipitation

intensity during the chosen time period was about 1 mm hr−1, as it was observed by a
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disdrometer on-site. We assume that raindrops have a spherical shape which is characterized

by the polarizability ratio of 1. Values of retrieved ξe were mainly 1.00± 0.02.

The algorithm was applied to 6-hour time series of scanning polarimetric observations

from 13:30 to 19:30 UTC on 20 October 2014. The results are presented in Fig. 5.12.

Fig. 5.12a shows the time-height cross section of the equivalent radar reflectivity factor
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Figure 5.9: Range-altitude cross sections of (a) signal-to-noise ratio, (b) differential reflectiv-

ity ZDR, and (c) correlation coefficient ρhv taken at Cabauw, the Netherlands, from 18:16 to

18:20 UTC on 20 October 2014. Shown parameters are calculated for the maximum spectral lines

(spectral peaks).
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Figure 5.10: Measured elevation dependencies of differential reflectivity (a) and correlation

coefficient (b) and logarithms of EZDR (c) and ERHV (d). Measured data correspond to 3 km

height of the left half-scan of Fig. 5.9. White contours indicate areas with EZDR(κ, ξe) not

exceeding the minimum EZDR by a factor of 1.1. White crosses mark the results of the optimization

algorithm. According to the classification scheme described in the text, this case corresponds to

a polarizability ratio of 1.6 (prolate spheroids).

from a collocated vertically pointed cloud radar MIRA-35 with LDR mode. The time period

corresponding to the elevation scan that is shown in Fig. 5.9 is indicated by the red rectangle

in Fig. 5.12a. Several cloud layers at different heights were observed during the measurement.

High-level clouds with a cloud top at around 8 km height were observed from 13:30 to 14:30

UTC and from 15:00 to 17:00 UTC. Reflectivity values for these cloud layers mostly exceeded

−10 dBZ, which is high enough to calculate polarimetric variables. From 15:00 to 19:30 UTC

a thick mid-level cloud with a top at 5 km height was observed. At 16:40 UTC strong ice

formation, indicated by high values of the radar reflectivity, was registered. Melting of

ice particles resulted in a short precipitation event reaching the ground. Later, the cloud

experienced seeding from the high-level cloud above. From 18:15 UTC the cloud split into

two thin cloud layers with cloud tops at 5 and 3 km height. Different ambient conditions
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Figure 5.11: Measured elevation dependencies of differential reflectivity (a) and correlation

coefficient (b) and logarithms of EZDR (c) and ERHV (d). Measured data correspond to 4.7 km

height of the left half-scan of Fig. 5.9. White contours indicate areas with EZDR(κ, ξe) not

exceeding the minimum EZDR by a factor of 1.1. White crosses mark the results of the optimization

algorithm. According to the classification scheme described in the text, this case corresponds to

a polarizability ratio of 0.4 (oblate spheroids).

within these layers caused different types of ice crystals. At about 2 km height thin low-

level cloud layers appeared from 13:00 to 17:00 UTC. These cloud layers had not enough

SNR and/or were spatially inhomogeneous and, therefore, were filtered out by the retrieval

algorithm.

In Figs. 5.12b and c mean and standard deviation of the polarizability ratio are presented,

respectively. Every vertical profile was calculated from a half elevation scan. Thus, during

a scan cycle (see Fig. 5.8) four consecutive profiles which correspond to different azimuth

directions were derived. It can be seen that the high-level clouds (above 5 km height)

are characterized by a polarizability ratio of 0.85 ± 0.07. According to Fig. 5.4 this can

be caused either by ice particles of quasi-spherical shape or of low density or both. Low

density (<0.1 g cm−3) of ice particles in cirrus clouds was reported, e.g., by Heymsfield

et al. [2002]. Ice particles in the mid-level cloud with the top below 5 km height showed
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Figure 5.12: Height-time cross sections of (a) equivalent radar reflectivity factor Zh, mean (b)

and standard deviation (c) of polarizability ratio ξe, mean (d) and standard deviation (e) of

degree of orientation κ taken at Cabauw, the Netherlands, on 20 October 2014. The equivalent

radar reflectivity factor Zh was measured with a collocated vertically pointed 35-GHz cloud radar

MIRA-35 operated in LDR mode and with 1 s averaging. The vertical red line marks the time

period which corresponds to Fig. 5.9.

values of ξe ≈ 0.43± 0.17, which indicates a strongly oblate shape and a high density of ice

particles (Fig. 5.4). From 15:50 to 16:30 UTC the polarizability ratio increased to values

of ξe ≈ 0.83 ± 0.1 towards the bottom of the cloud. These signatures were accompanied

by an enhancement of the effective radar reflectivity factor (Fig. 5.12a). Thus, the larger

particles were more spherical and/or less dense which, is a clear indication of particle growth

due to aggregation and/or riming processes. The capability to identify such processes can be

especially useful for the investigation of precipitation formation. It can be seen from the virga

shown in Fig. 5.12a, which partly reaches the ground, that the areas in which aggregation

or riming occur can produce precipitation. From 18:15 to 19:15 UTC a thin cloud layer
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with prolate ice particles was observed at 3 km height. These particles are characterized by

ξe ≈ 1.5± 0.2 (see also Fig. 5.10).

In Figs. 5.12d and e the mean and standard deviation of the degree of orientation are

shown, respectively. Areas, where the spheroid shape of the ice particles was classified as

strongly oblate or prolate, are characterized by κ values of ∼ 0.7 and ∼ −0.95, respectively,

i.e., particles are oriented nearly horizontally, which is consistent with theoretical studies

[Sassen, 1980; Mitchell , 1996; Noel and Sassen, 2005]. The low standard deviation of κ in

these areas indicates similar orientation distributions for ice particles observed at 30◦ ≤ |ψ| ≤
60◦. Observed high-level clouds and cloud areas with seeding had considerably lower values

of the degree of orientation with κ ∼ 0.4−0.6. These values are indicative of a more random

orientation of ice particles (around the horizontal alignment). The high standard deviation

of κ in these clouds shows that ice particles observed at 30◦ ≤ |ψ| ≤ 60◦ have significantly

different orientation distributions.
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Chapter 6

Shape-temperature relationship of

pristine ice crystals

In the previous chapter the algorithm for a quantitative characterization of shapes and ori-

entations of ice particles based on polarimetric observations with a newly developed 35-GHz

cloud radar with hybrid polarimetric configuration was presented. The algorithm was ap-

plied to a complex cloud system observed during the ACCEPT field campaign in Cabauw,

the Netherlands. During the ACCEPT campaign the performance of the hybrid-mode cloud

radar was evaluated and a long-term dataset of six weeks was aquired. Such a dataset pro-

vides great potential for the statistical characterization of ice crystal habits under ambient

conditions. This chapter aims at the characterization of the shape of preferably pristine

ice crystals formed in mixed-phase clouds. Due to the lack of in situ observations, the re-

trieval could not be evaluated against direct observations of particle shapes. Nevertheless,

an approach is presented that allows for an indirect validation of the polarimetric observa-

tions using microphysical properties of ice crystals grown in a wind tunnel under laboratory

conditions. This chapter is based on Myagkov et al. [2016b] and is organized as follows.

Section 6.1 describes the instruments used for this study and the data set. Five case studies

are discussed in details in Sec. 6.2. The results of the analysis of 22 measurement cases and

their comparison with laboratory studies are presented in Sec. 6.3. In Sec. 6.4 the retrieved

degrees of orientation are shown.

6.1 Instrumentation and data set

The ACCEPT measurement campaign was initiated by the Leibniz Institute for Tropospheric

Research (TROPOS), Leipzig, Germany, the Technical University of Delft, the Netherlands,

and METEK GmbH, Elmshorn, Germany within the ITaRS (Initial Training for atmospheric

Remote Sensing) project. The major goal of the campaign was to evaluate the capabilities
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Figure 6.1: Instruments at the CESAR observatory during the ACCEPT campaign. The figure

was provided by Dr. Patric Seifert.

of the newly developed hybrid-mode polarimetric cloud radar of type MIRA-35 described

in Chapter 4 and to estimate the potential of its implementation into existing observational

stations. In the following, this radar is denoted as the hybrid-mode MIRA-35.

The campaign took place at CESAR, located in the Netherlands (51.971◦N, 4.927◦ E),

from 7 October to 17 November 2014. The CESAR observatory operated by the Royal

Netherlands Meteorological Institute (KNMI) is well equipped with a variety of atmospheric

remote-sensing instruments. In addition to the instruments available at CESAR and the

hybrid-mode MIRA-35, which was rented from METEK GmbH, the main instruments of

LACROS were brought to Cabauw. The instruments operated during the ACCEPT cam-

paign are shown in Fig. 6.1. In Table 6.1 the equipment that was used for this particular

study is listed.

As mentioned in Chapter 5, the shape retrieval requires information about elevation

dependencies of the differential reflectivity ZDR and correlation coefficient ρhv. Therefore,

the hybrid-mode MIRA-35 was installed into the scanning unit of the LACROS container.

An implemented scan cycle is shown in Fig. 5.8. During every scan cycle the radar was

pointed vertically for several minutes. In this way, occasional rain events could be used for

the calibration of polarimetric variables as explained in Chapter 4.

During the campaign a second cloud radar MIRA-35 was operated as well. The radar
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Table 6.1: Instruments used in the ACCEPT campaign

Instrument Main specifications Measurements Reference

Cloud radar

MIRA-35

Frequency: 35.5 GHz,

configuration: LDR,

pointing: zenith,

temporal resolution: 1 s,

range resolution: 30 m

Equivalent radar

reflectivity factor, LDR,

mean Doppler velocity,

Doppler width,

complete spectra

Görsdorf et al. [2015]

Cloud radar

MIRA-35

Frequency: 35.17 GHz,

configuration: hybrid,

pointing: scanning,

temporal resolution: 1 s,

range resolution: 30 m

Equivalent radar

reflectivity factor, mean

Doppler velocity,

Doppler width,

complete spectra,

differential reflectivity,

correlation coefficient,

differential phase shift

Myagkov et al. [2016a]

Multiwavelength

Raman lidar

PollyXT

Wavelengths: 355 nm,

532 nm, 1064 nm,

pointing: 5◦ off-zenith,

temporal resolution: 30 s,

range resolution: 7.5 m

Backscatter coefficient

at three wavelengths,

volume depolarization

ratio at 532 nm

Althausen et al. [2009]

Microwave

radiometer

HATPRO

Bands: 22–31 GHz,

51–58 GHz,

temporal resolution: 1 s

Brightness

temperatures,

temperature profile,

liquid water path

Rose et al. [2005]

Radiosonde

Vaisala RS92

Variable resolution Temperature, pressure,

relative humidity, wind

Suortti et al. [2008]

is owned by TROPOS and has the conventional linear depolarization configuration. In the

following, this radar is denoted as LDR-mode MIRA-35. The radar was unmounted from

the scanning unit of the LACROS container and installed into a trailer without scanning

unit and, thus, was pointed vertically. In order to avoid interference between the two cloud

radars, their operation frequencies were set to differ by approximately 330 MHz (35.17 GHz vs

35.5 GHz for hybrid-mode and LDR-mode MIRA-35, respectively). Additionally, the trailer

was placed about 30 m away from the LACROS container to avoid any near-field interference.

In this study, data from LDR-mode MIRA-35 are used to estimate the temporal and spatial

dimensions of the observed cloud systems.

When both liquid water droplets and ice crystals are present in a volume, cloud radar

alone can hardly detect the liquid-water signatures. It is, however, well known that po-

larimetric lidars are powerful tools for the detection of supercooled liquid particles within

mixed-phase clouds [Schotland et al., 1971; Seifert et al., 2010]. The multiwavelength Raman

lidar PollyXT was employed for this purpose. The lidar was set up near the Cabauw meteo-

rological tower, which is located about 300 m north of the measurement site where most of
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the other instruments were operated. In order to avoid specular reflection from horizontally

aligned planar surfaces of ice crystals the laser beam of PollyXT was pointed to 5◦ off-zenith.

The container with the lidar was oriented in such a way that the beam was above the radar

site at about 4 km height.

Temperature is the main parameter controlling the efficiency of heterogeneous nucleation

of ice crystals [DeMott et al., 2015] and it is lowest at cloud top. Therefore, in this study

cloud-top temperature is used as the reference parameter when crystal properties are inves-

tigated. In order to retrieve the temperature at the cloud tops, the used techniques are, in

order of priority, either locally launched radiosondes, the microwave radiometer HATPRO,

or assimilated meteorological datasets. Radiosondes of type Vaisala RS-92 were occasionally

launched on-site. If no local radiosonde information was available, radiosonde data from the

00 UTC launch at De Bilt (WMO code: 06260; 20 km northeast of CESAR site) was used

in case the cloud was observed around 00 UTC. If no recent radiosonde ascent was avail-

able, temperature data of HATPRO was used in non-precipitating conditions. Finally, for

precipitating cases, when the operation of the microwave radiometer is hampered, temper-

ature profiles from the GDAS1 dataset (available at: http://ready.arl.noaa.gov/gdas1.php)

provided by the Global Data Assimilation System (GDAS, Kanamitsu [1989]) operated by

the U.S. National Center for Environmental Prediction (NCEP) were used.

For the analysis 22 cases of mid-level mixed-phase clouds with the following criteria were

manually chosen:

1. The hybrid-mode MIRA-35 was operating and the measured signal-to-noise ratio was

high enough to retrieve calibrated polarimetric variables according to Chapter 4.

2. The investigated cloud layer did not experience seeding from upper clouds. Seeding

would hamper the relation of crystal properties to a definite cloud-top temperature.

3. The calibrated polarimetric variables were available for more than 50 % of the data

points in elevation dimension within a half-scan of the hybrid-mode MIRA-35. This is a

basic criterion for the horizontal homogeneity of the analyzed cloud layer. However, the

cloud spatial homogeneity is not a major assumption of the retrieval algorithm. Instead,

it is assumed that ice particles present at the same altitude (same ambient conditions)

have the same shape, even if the cloud is not spatially homogeneous [Myagkov et al.,

2016a].

4. Cloud-top temperatures were in the range from about −20 ◦C to −0 ◦C. Ice crystals

formed at such temperatures under water saturation conditions have a clear primary

shape [Bailey and Hallett , 2009]. At lower temperatures ice particles can have a variety

of shapes at a certain temperature caused by differencies in the ice supersaturation

[Bailey and Hallett , 2004], which can significantly influence the shape retrieval.
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5. For non-precipitating cases lidar data should be available for the identification of liquid

layers.

6. At temperatures above −5 ◦C the presence of ice crystals should be confirmed. For

cases without liquid precipitation, ice virgae produce strong volume depolarization

(> 0.2) of the lidar signal. For precipitating cases, a melting layer is an indicator of ice

presence. If none of the two checks was positive, the layer was excluded from further

analysis.

In the ideal case, analyzed cloud layers should not produce liquid precipitation to permit

the usage of lidar and radiometer data. Nevertheless, most of the clouds with cloud-top

temperatures warmer than −5 ◦C that fulfilled the requirements 1–4 produced precipitation.

6.2 Examples of the shape retrieval

In this section five examples of the shape estimation retrieval based on elevation scans of

differential reflectivity and correlation coefficient are shown. Mixed-phase clouds with differ-

ent cloud-top temperatures observed during the ACCEPT campaign were chosen. Several

types of ice crystals were clearly identified by the hybrid-mode MIRA-35. The fifth case

study indicates that slight variations of cloud-top altitude can lead to changes from oblate

to prolate shape.

6.2.1 Case 1: 12 October 2014, 15:00–16:00 UTC

Figures 6.2a and b show height-time cross sections of the equivalent radar reflectivity Zh

and LDR measured by LDR-mode MIRA-35. These parameters were calculated using the

total powers of the received signals in the co- and cross-polarized channels. A cloud system

observed on 12 October 2014, 15:00–16:00 UTC, is depicted. The radar observed a cloud

layer with the top at around 5.2 km height. After 15:32 UTC the cloud layer was influenced

by a higher-level cloud with a top height at 6 km height. Thus, for the analysis the time

period 15:16–15:20 UTC, when the high-level cloud did not cause any seeding effects to the

lower layer, was chosen. Within the chosen period the SNR was high enough to apply the

shape retrieval algorithm. On the other hand, ice development in this period was not as

intensive as the one starting at 15:20 UTC, which is confirmed by about 10 dB lower values

of Zh (see Fig. 6.2a). Figure 6.2b shows that in the cloud layer ice particles did not produce

depolarization. Observed values of LDR are very close to the minimum observable LDR

of −31 dB. In Fig. 6.2c and d the attenuated backscatter coefficient and the volume linear

depolarization ratio measured by PollyXT are presented, respectively. A single liquid layer

indicated by increased values of the backscatter coefficient can be clearly seen at the top of

the cloud layer. Low values of volume depolarization ratio within the liquid layer are caused
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Figure 6.2: Case study of 12 October 2014, 15:00–16:00 UTC. (a) Radar reflectivity Zh and (b)

radar linear depolarization ratio from LDR-mode MIRA-35, (c) attenuated backscatter coefficient

and (d) volume linear depolarization ratio at 532 nm from PollyXT, (e) differential reflectivity

ZDR and (f) correlation coefficient ρhv measured by hybrid-mode MIRA-35. Vertical profiles of

polarizability ratio for the left- (g) and right-half scans (h), respectively. (i) Vertical temperature

profile from the microwave radiometer HATPRO. (j) Photo taken by a web camera. The red

rectangle shows the analyzed cloud layer and the time period corresponding to a full elevation

scan of hybrid MIRA-35. Red horizontal lines in (h,i,j) represent the cloud top.
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by the spherical shape of supercooled water drops. It is noticeable that values of volume

depolarization ratio were also low in the ice virga. The reason for this behavior is unclear,

considering that PollyXT is pointed 5◦ off-zenith to prevent the influence of specular reflection

at planar planes of horizontally aligned crystals. It may thus be a distinct microphysical

feature of the ice crystals formed at the given temperature.

A photograph of the analyzed cloud layer is shown in Fig. 6.2g. It can be seen that

the cloud is relatively homogeneous. Figures 6.2e and f depict the differential reflectivity

ZDR and the correlation coefficient ρhv measured by the hybrid-mode MIRA-35, which were

calculated for the spectrum peaks. The elevation scans of ZDR and ρhv are uncorrected

for the polarization coupling to make the figures more illustrative. After the correction the

amount of data points is much lower. Nevertheless, for the shape retrieval shown below the

corrected values were used. Strong elevation dependencies can be seen in ZDR and ρhv. At

0◦ elevation, the differential reflectivity is almost zero, whereas it reaches values of 3 dB at

60◦ elevation. The correlation coefficient has values close to 1 in zenith direction, while its

values at 60◦ reach 0.98.

Using the corrected values of ZDR and ρhv polarizability ratios were retrieved separately

for the left- and right-half scans. For the antenna coupling correction vertical measurements

in rain on 12 October 2014, 19:00–20:00 UTC were used. Results of the retrievals are given

in Figs. 6.2h and i. Vertical profiles indicated by red line correspond to mean values of the

polarizability ratio. Horizontal blue bars denote 2 standard deviations of the polarizability

ratio. The value of the polarizability ratio close to the cloud top is of special interest, because

there ice particles should be least influenced by processes such as aggregation and riming,

which would lead to a deviation of the crystal shape from its pristine state. Unfortunately,

often the SNR at the cloud top is too low to apply the retrieval. The retrieved value of

the polarizability ratio closest to the cloud top is 0.62 ± 0.09, which corresponds to oblate

spheroids. The distance from the cloud top is about 150 m. Figure 6.2j represents a tem-

perature profile retrieved from the microwave radiometer HATPRO. It can be seen that at

the cloud top, where ice crystals are formed, the temperature was −14.2 ◦C.

6.2.2 Case 2: 18 October 2014, 01:00–02:00 UTC

An analysis of a mid-level mixed-phase cloud observed on 18 October 2014, 01:00–02:00 UTC,

is given in Fig. 6.3. The time period chosen for the retrieval is 01:23–01:27 UTC. The cloud

top estimated from equivalent radar reflectivity measured by LDR-mode MIRA-35 (Fig. 6.3a)

was at about 5 km height. The thickness of the cloud layer exceeded 1.2 km. The radar

reflectivity reached values as high as 10 dBZ, which indicate the presence of large ice particles.

LDR values registered by LDR-mode MIRA-35 for the analyzed period were mostly low, even

though areas with increased LDR (up to −17 dB) can be seen occasionally at 4.0–4.5 km

height. At the top of the cloud a liquid layer characterized by high attenuated backscatter
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Figure 6.3: Same as Fig. 6.2, but for 18 October 2014, 01:00–02:00 UTC, and without a photo-

graph.
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coefficients and low volume depolarization ratios (Figs. 6.3c and d, respectively) is visible.

It should be noted that in the second half of the analyzed period (01:27 UTC) the lidar

also detected an internal liquid layer at 4.5 km height. In contrast to case 1, where low

volume depolarization ratios were observed with PollyXT, the ice virgae observed in the case

2 produced volume depolarization ratios exceeding 0.5.

Elevation scans of the differential reflectivity and the correlation coefficient depicted in

Figs. 6.3e and f, respectively, show that the cloud was spatially inhomogeneous. Within the

right-half scan only slight angular changes in ZDR and ρhv are visible. In the left-half scan

high ZDR and low ρhv values were observed at lower elevations at 4.0–4.5 km height, where

the lidar detected the internal liquid layer. For the correction of the polarization coupling

vertical measurements in a short precipitation event on 18 October 2014, 2:30–2:50 UTC,

were used. The results of the shape retrieval are shown in Figs. 6.3g and h. It can be seen that

due to the spatial inhomogeneity the calculated polarizability ratios are available only for a

limited number of range bins. Nevertheless, the results show that in the left-half scan prolate

particles characterized by the polarizability ratio of 1.5±0.2 were detected. In the right-half

scan the polarizability ratios closest to the cloud top were 1.1± 0.1. Such values correspond

to particles with quasi-spherical shapes and/or low apparent ice density (see Fig. 5.4). Below,

such particles are denoted as quasi-isotropic as they do not change the polarization of the

scattered wave significantly. The distances from the liquid layers, where prolate and quasi-

isotropic particles formed, were about 0.4 and 0.8 km, respectively. Figure 6.3i shows that

temperatures at liquid-layer heights were about −6 ◦C and −9 ◦C, respectively. We point out

that the coexistence of different types of particles can lead to a misclassification of prolate and

oblate particles. The spectrum peaks at different elevations can be dominated by different

particles. One of the ways to avoid this influence is a combined Doppler–polarimetric analysis

similar to the one given by Oue et al. [2015]. After the separation of spectral modes the

retrieval algorithm can be applied to each mode separately. In this thesis such analysis is

not provided.

6.2.3 Case 3: 20 October 2014, 18:00–19:00 UTC

In Fig. 6.4 a residual part of a mixed-phase cloud system observed on 20 October 2014,

18:00–19:00 UTC, is shown. A cloud layer with the cloud top at around 3.6 km height in the

time period of 18:16–18:20 UTC (Fig. 6.4a) is considered. In the chosen area the cloud layer

was about 1 km thick and the radar reflectivity reached −10 dBZ. The cloud layer did not

experience seeding from the higher cloud layer. High values of LDR (Fig. 6.4b) that reached

up to −15 dB indicated the presence of strongly non-spherical scatterers. In Figs. 6.4c and

d enhanced values of the attenuated backscatter coefficient and low volume depolarization

ratios at the top of the cloud layer indicated the presence of a single supercooled liquid layer.

The average volume depolarization ratio in the ice virga was ∼ 0.3.
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Figure 6.4: Same as Fig. 6.2, but for 20 October 2014, 18:00–19:00 UTC, and without a photo-

graph.
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Figures 6.4e and f show that the cloud layer was spatially homogeneous. Strong angular

dependencies in ZDR and ρhv can be clearly seen. Changes in differential reflectivity were

up to 2 dB and 4 dB within the left- and right-half scan, respectively. The correlation

coefficient ρhv had its minimum in zenith-pointing direction and approached higher values

at lower elevations. It was shown in Chapter 5 that such signatures are specific for prolate

particles. For the correction of the polarization coupling vertical observations in light rain on

21 October 2014, 8:00 – 9:00 UTC, were used. The results of the shape retrieval are depicted

in Figs. 6.4g and h. Retrieved polarizability ratios are slightly higher in the right-half scan,

which is caused by the observed increased values of ZDR. The polarizability ratios closest to

the cloud top are 1.5± 0.2. The distance from the cloud top is about 240 m. A temperature

profile retrieved from the microwave radiometer HATPRO indicated that the temperature

at the cloud top was about −6 ◦C (see Fig. 6.4i).

6.2.4 Case 4: 10 November 2014, 02:00–03:00 UTC

A complex mixed-phase cloud system observed on 10 November 2014, 02:00–03:00 UTC, is

presented in Fig. 6.5. A cloud layer with the cloud top at around 5 km height in the time

period 02:53–02:57 UTC is considered for the analysis. The cloud layer was more than 2 km

thick. The equivalent radar reflectivity at the cloud top did not exceed −10 dBZ, while it

reached values up to 10 dBZ towards the cloud bottom (Fig. 6.5a). LDR values measured

by LDR-mode MIRA-35 were about −30 dB (Fig. 6.5b). In Fig. 6.5c it can be seen that

the laser beam often could not penetrate through the whole cloud layer because of strong

attenuation. Nevertheless, some indications of liquid water at the cloud top are present. For

example, two areas at 5.4 km height characterized by low volume depolarization ratio can

be identified. There is also a thick internal liquid layer at about 4 km height specified by

the increased attenuated backscatter coefficient and the low volume depolarization ratio.

Figures. 6.5e and f show almost no angular dependencies of ZDR and ρhv. Some slight

changes are visible at 4 km height where the lidar detected the internal liquid layer. For

the correction of the antenna coupling a short precipitation event on 1 November 2014,

17:00–18:00 UTC, was used because the correction parameters were found to be almost

constant in November 2014. The retrieved polarizability ratios were close to 1 characterizing

quasi-isotropic particles. The profiles indicate rapid changes of the polarizability ratio from

0.92 to 1.05, e.g., from 4.5 to 4.8 km height in the left-half scan. Such changes result from

misclassification of prolate and oblate particles which is caused by the variability in ZDR and

ρhv due to measurement noise and/or differences in scattering properties of ice populations.

Biases in polarimetric variables caused by the polarization coupling also lead to inaccurate

classification. Without the polarization coupling correction given by [Myagkov et al., 2016a]

the misclassification for the used radar would result in a range of polarizability ratios from 0.8

to 1.2. For the following analysis, the polarizability ratio of 0.92±0.08 observed 450 m below
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Figure 6.5: Same as Fig. 6.2, but for 10 November 2014, 02:00–03:00 UTC, and without a

photograph.
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the cloud top was chosen. The temperature measured at 5.5 km height by the radiosonde

launched at midnight from De Bilt was about −20 ◦C (see Fig. 6.5i).

6.2.5 Case 5: 7 November 2014, 20:00–21:00 UTC

Figure 6.6 depicts a precipitating cloud system with the cloud top located at around 2.3 km

height, which was observed on 7 November 2014, 20:00–21:00 UTC. The SNR in this case

was not high enough to retrieve polarizability ratios, although elevation dependencies of the

measured polarimetric variables allow us to classify the general shape of the observed ice

particles. Two full scans performed by the hybrid-mode MIRA-35, which correspond to

time periods shown in Fig. 6.6a enframed by black rectangles, were analyzed. The time gap

between these periods is 11 min. It can be seen that values of Zh in the first period do not

exceed −15 dBZ. Ice formation was not intensive enough to produce precipitation reaching

the ground. Corresponding ice particles caused low depolarization, which is indicated by

low LDR values of around −30 dB shown in Fig. 6.6b. In contrast, ice formation during

the second time period was much more intensive. Zh values close to the top of the cloud

were around −20 dBZ, while those observed 1 km below the cloud top exceeded 10 dBZ.

Ice particles were large enough to produce liquid precipitation at the ground with 10 dBZ

equivalent radar reflectivity. Ice particles in the second period were characterized by LDR

values of up to −15 dB. The melting layer with LDR of −12 dB is clearly seen at about

1.4 km height.

In Figs. 6.6c and d range-height cross sections of SNR for the first and second time period

are given, respectively. In both cases, SNR is of the same order of magnitude. Elevation

scans of differential reflectivity shown in Figs. 6.6e and f yield ZDR values close to 0 dB in the

zenith-pointing direction, while at lower elevations ZDR reached 4 dB and 2 dB, respectively.

For both cases, ZDR had less pronounced angular dependence at 1.5 km height. This effect

can be caused by aggregation as particles become more spherical and/or less dense. Angular

dependencies of ρhv at the cloud tops show a different behavior. In Fig. 6.6g ρhv has the

highest value in the zenith-pointing direction and slightly decreases at lower elevations. For

the second time period ρhv has its minimum value of about 0.93 at vertical pointing direction

and increases up to 0.98 at lower elevations. Observed elevation dependencies at the cloud

tops indicate the presence of oblate and prolate particles for the first and the second time

period, respectively. Unfortunately, continuous temperature profiles from the microwave

radiometer were not available for this case because of precipitation. Temporal resolution

of the GDAS1 model is three hours and can therefore not be used to capture temperature

variations within 15 min. The temperature profile given in Fig. 6.6i shows a cloud-top

temperature of −4 ◦C at 2.3 km height at 21:00 UTC. In Fig. 6.6a it can be seen that cloud-

top altitudes for the analyzed time periods differ by about 200 m. Also vertical variations of

LDR (Fig. 6.6b) indicate changes of the 0 ◦C isotherm. Thus, temperatures at the top could
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Figure 6.6: Case study of strong short-term variabilty of ice particle shapes observed at Cabauw,

the Netherlands, on 7 November 2014, 20:00–21:00 UTC. (a) Radar reflectivity Zh and (b) radar

linear depolarization ratio from LDR-mode MIRA-35, (c) signal-to-noise ratio, (e) differential re-

flectivity ZDR and (g) correlation coefficient ρhv measured by hybrid-mode MIRA-35 from 20:31

to 20:35 UTC, (d) signal-to-noise ratio, (f) differential reflectivity ZDR and (h) correlation coeffi-

cient ρhv measured by hybrid-mode MIRA-35 from 20:46 to 20:50 UTC, (i) vertical temperature

profile from the GDAS1 model. Two black rectangles in (a) show the analyzed cloud layer and the

time periods corresponding to full elevation scans of hybrid-mode MIRA-35. The red horizontal

line in (i) represents the cloud top at 20:45 UTC.
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be different by few degrees, which can cause crucial differences in the ice particle shape.

Such strong indications of the presence of oblate particles at such warm temperatures were

observed twice during the whole field campaign. In both cases, the existence of these particles

was registered for not longer than about 5 min.

6.3 Comparison of shape with laboratory studies

The analysis shown in Sec. 6.2 was applied to 22 cases. The number of cases corresponding

to cloud-top-temperature ranges from −7 to −3 ◦C, −13 to −7 ◦C, −17 to −13◦ C, and −25

to −17 ◦C are 9, 2, 9, and 2, respectively. Most of the analyzed clouds had a liquid layer

at the top, which was identified using the polarimetric measurements from the lidar. In the

case of precipitating clouds the conclusion of Westbrook and Illingworth [2011] that 95 % of

ice crystals at temperatures warmer than −20 ◦C are formed in presence of liquid water is

taken into account. For every case the polarizability ratio closest to the cloud top detected

by the LDR-mode MIRA-35 was chosen. The distance from the cloud top mostly did not

exceed 500 m.

For the comparison, measurements from fall chamber studies of Takahashi et al. [1991]

were utilized. In order to facilitate the comparison, first the polarizability ratio needs to be

derived from the laboratory measurements. Thus, the information about axis lengths and

mass of ice particles grown at water saturation conditions in the temperature range from

−23 to −3 ◦C was used. The apparent ice density of an ice particle was defined as follows:

ρa =
8m

3
√

3a2c
, (6.1)

where m is the mass of the ice particle. According to Takahashi and Fukuta [1988] the

apparent ice density in Eq. (6.1) is calculated considering the ice particle as a hexagonal

prism.

The dependencies of the geometrical axis ratio and the apparent ice density on the tem-

perature at which ice particles were formed are shown in Fig. 6.7. At temperatures as low as

−5 and −15 ◦C long columns (strongly prolate) and dendrites (strongly oblate particles) were

formed in the laboratory, respectively. Quasi-spherical (also known as isometric) particles

were observed near −3, −10, and −23 ◦C. These shape-temperature dependencies have been

known from laboratory measurements since the 1950s [Kampe et al., 1951], even though it

is not clear yet to which extent these studies are valid at ambient conditions. Considering

the apparent ice density, it can be seen that the columns and the dendrites had values of

ρa down to 0.3 g cm−3. At temperatures around −12 and −16 ◦C particles had the highest

values of ρa exceeding 0.8 g cm−3. Ice formation in this temperature range was studied more

precisely by Takahashi [2014]. Quasi-spherical particles tended to have ρa in the range of

0.6–0.8 g cm−3.
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Figure 6.7: Temperature dependence of geometrical axis ratio for particles grown in a free-

fall cloud chamber [Takahashi et al., 1991]. Apparent density is color-coded. Note that ξg > 1

corresponds to prolate particles, ξg < 1 corresponds to oblate particles. Numerical data were

provided by Prof. Takahashi, Hokkaido University of Education, Sapporo, Japan.

It is known that the dielectric constant of ice is almost linearly dependent on apparent

ice density [Oguchi , 1983]. In this study the following dependence is assumed:

εr = 2.36ρa + 1, (6.2)

where ρa is in g cm−3.

Based on the spheroidal scattering model and information about geometrical axis ratios

and dielectric constants of ice crystals grown in a fall chamber, polarizability ratios ξe (see

Eqs. (5.5)–(5.10)) were calculated. For the polarimetric scattering model it was assumed

that spheroids have the same volume and the geometrical axis ratio as the hexagonal prisms

used for the calculation of the apparent ice density in Eq. (6.1). In Fig. 6.8 values of ξe

retrieved from the laboratory studies are shown as blue filled circles. The highest ξe values

of about 1.6–1.7 were observed in the temperature range from −7 to −6 ◦C. Even though

prolate particles with the highest geometrical axis ratio were formed at −5 ◦C, they had low

apparent ice density and therefore their ξe did not exceed 1.4. Polarizability ratios of 0.4

correspond to ice crystals that formed at temperatures of −12 and −16 ◦C, where ice crystals

were found to cause apparent ice densities exceeding 0.8 g cm−3. Dendrites, which form at

−15 ◦C, had low ρa that led to values of ξe of 0.6.

In Fig. 6.8 polarizability ratios retrieved from the polarimetric observations of the hybrid-

mode MIRA-35 during the ACCEPT campaign are also shown (red filled dots with error

bars). A good agreement between findings from the free-fall chamber and remote observations
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Figure 6.8: Temperature dependence of polarizability ratios for ice crystals grown in the free-

fall chamber (blue filled circles) and for the ones located close to tops of mixed-phase clouds,

retrieved from hybrid-mode MIRA-35 (red filled circles). Note that ξe > 1 corresponds to prolate

particles, ξe < 1 corresponds to oblate particles. Vertical red bars represent±1 standard deviations

of observed polarizability ratios. Data from the free-fall chamber [Takahashi et al., 1991] were

provided by Prof. Takahashi, Hokkaido University of Education, Sapporo, Japan.

can be seen. In the temperature range from −6 to −4 ◦C values of ξe retrieved close to cloud

tops varied from 1.4–1.8. At temperatures from −9 to −7 ◦C isometric particles were detected

with ξe of 0.8–1.2. In the temperature range from −17 to −13 ◦C observed oblate particles

mostly had ξe of 0.4–0.6. At temperatures from −25 to −20 ◦C ice crystals had ξe of 0.8–

1. At the same time, differences in measured and calculated polarizability ratios can be

seen in Fig. 6.8 at temperatures from −4 to −3 ◦C. As it was mentioned in Sec. 6.1, such

cases often had liquid precipitation, which hampered utilization of MWR temperatures and,

therefore, temperature from GDAS1 was used. Thus, the differences between polarizability

ratios calculated from the laboratory studies and the ones retrieved from remote observations

can be caused by uncertainties in temperature values from the GDAS1 data set. Even though

the number of cases available from six weeks of measurements is quite low, it is shown that

ice particles formed close to the top of mid-level mixed-phase clouds at temperatures warmer

than ∼ −25 ◦C in general have a similar dependence of shape and apparent ice density on

ambient temperature as the ones grown in the free-fall chamber.
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6.4 Orientation of pristine ice crystals

As it was mentioned in Sec. 5.1, the width of the canting angle distribution is described

by the degree of orientation κ. The retrieved temperature dependence of |κ| is shown in

Fig. 6.9. For the retrieval the 22 cases considered above were used. In the temperature

ranges from −7 to −3 ◦C and from −17 to −13 ◦C mean values of κ were mainly above 0.7.

Thus, observed strongly prolate and oblate particles were mostly characterized by a standard

deviation of θp below 20◦. The retrieved values for strongly non-spherical particles are in

agreement with results of Kajikawa [1976], Matrosov et al. [2005], and Melnikov and Straka

[2013]. At temperatures from −9 to −7 ◦C and below −20 ◦ mean values of κ were in the

range from 0.3 to 0.62 corresponding to a standard deviation of θp from 30◦ to 40◦. Thus,

observed quasi-isotropic ice particles tended to be more randomly oriented in comparison

with strongly non-spherical ice crystals. In spite of rare studies devoted to ground-based in

situ observations of ice-particle orientations (e.g., Garrett et al. [2015]), direct observations

of particle orientations at cloud tops are not available for further in-depth evaluations of the

dataset retrieved within this work.
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Figure 6.9: Temperature dependence of absolute values of the degree of orientation for ice crystals

located close to tops of mixed-phase clouds, retrieved from hybrid-mode MIRA-35. Vertical red

bars represent ±1 standard deviations of observed degree of orientation.
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Chapter 7

Summary and outlook

Polarimetric cloud radar is one of the remote-sensing instruments that can provide valuable

information on ice particle properties. Flexible scanning capabilities of modern cloud radars

allow for the implementation of novel algorithms for classification and quantitative descrip-

tion of ice crystals. In this thesis, it was shown that existing backscattering models, assuming

the spheroidal approximation of cloud scatterers, permit us to establish a link between a set

of measured polarimetric variables and the shape and orientation of cloud particles.

In order to measure a variety of polarimetric variables the new 35-GHz cloud radar

MIRA-35 with hybrid polarimetric configuration was implemented in collaboration between

TROPOS and METEK GmbH within the ITaRS project. The radar emits the horizontal and

vertical components of the transmitted wave simultaneously with the differential phase shift

set close to 0◦. It was shown in Chapter 4 that the radar permits the measurement of the

spectral polarimetric parameters differential reflectivity ZDR, slanted linear depolarization

ratio SLDR, correlation coefficient ρhv, cross-correlation coefficient ρs in the slanted basis,

and differential phase ΦDP . The slanted linear depolarization ratio and the cross-correlation

coefficient are derived using the rotation of the measured coherency matrix. Retrieved values

of these parameters are consistent with observations of cloud radars with LDR or SLDR

mode.

Radar hardware (e.g., antennas) affects the quality of polarimetric variables. Polarization

leakage between receiving channels results in biases in the observed ZDR, ρhv, LDR, and ρcx

values and, therefore, can cause uncertainties in the retrieved parameters. The biases depend

on the quality of the antenna system and thus are specific for a particular radar. In order

to estimate the influence of antenna quality on polarimetric observations, high-resolution

measurements of complex antenna patterns were conducted. In Chapter 3 measurements of

the antenna patterns were discussed, which were performed for the antenna systems of two

METEK Ka-band cloud radars, one with a good polarimetric isolation and the other one

with a pure polarization isolation. It was shown that up to 80 % of polarization leakage is
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produced by the struts holding the antenna sub-reflector. Based on the antenna patterns, the

biases in polarimetric variables measured in LDR mode were calculated. The obtained values

of ICPR (approximately −25 dB and −32 dB for the bad and the good antenna, respectively)

were in good agreement with independent ICPR estimates found from measurements with

a vertically pointing system in light rain. The ρcx biases were found to be about 0.4 and

0.1 for the two antennas, respectively. Estimates of the differences between ICPR values

calculated using complex antenna patterns and the upper ICPR bounds computed from

the amplitude patterns only were found not to exceed 2.5 dB. Further, a coherency matrix

formalism was used to develop an algorithm to correct the observed LDR and ρcx for the

polarization coupling effects. The correction algorithm was evaluated using measurements

of precipitating cloud systems. The intercomparison results from two collocated MIRA-35

cloud radars indicated that the correction uncertainty for LDR was about 3 dB for intrinsic

LDR values in a typical range from −30 to −10 dB. The results of applying the correction

algorithm to the correlation coefficient show that for volumes filled with isotropic scatterers

values of the correlation coefficient were 0 as expected from theoretical considerations. The

developed algorithm requires the I/Q data or coherency matrix measurements in light rain

or drizzle. In Chapter 4 a similar approach was applied to the measurements from the

developed hybrid-mode cloud radar in order to correct ZDR and ρhv. It was shown that after

the correction polarimetric variables are very close to those that would be observed with an

“ideal” cloud radar.

In Chapter 5 the developed algorithm for deriving the polarizability ratio ξe and degree of

orientation κ of particles based on differential reflectivity ZDR and correlation coefficient ρhv

measured by a cloud radar with hybrid polarimetric configuration was presented. The same

approach can be applied to slanted linear depolarization ratio SLDR and cross-correlation

coefficient ρs measured by a cloud radar with SLDR mode. Registered elevation dependencies

of differential reflectivity ZDR and correlation coefficient ρhv were related to polarizability

ratios ξe and degree of orientation κ of ice crystals. The polarizability ratio ξe depends on

the geometrical axis ratio ξg and apparent ice density ρa, while the degree of orientation

κ characterizes the width of the canting angle distribution. In Chapter 5 the algorithm

was applied to a complex cloud system. Vertical profiles of the polarizability ratio and the

degree of orientation were retrieved. The results showed clouds with oblate (ξe ≈ 0.43 ±
0.17), prolate (ξe ≈ 1.5 ± 0.2), and quasi-spherical or low-density particles (ξe ≈ 0.85 ±
0.07). All these clouds had different cloud-top heights (5 km, 3 km, and 8 km, respectively),

indicating different ambient conditions of ice formation. Areas, in which aggregation and/or

riming led to ice particle growth, could be detected. High absolute values of the degree of

orientation observed in areas dominated by oblate and prolate ice particles indicated their

nearly horizontal orientation. The orientation of slightly oblate or low-density ice particles,
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detected in high-level clouds and in areas with seeding, was found to be more random though

the primary orientation was horizontal.

In order to validate the retrieval algorithm, the cloud radar MIRA-35 with the hybrid

polarimetric configuration was deployed during the ACCEPT measurement campaign in

Cabauw, the Netherlands, in October and November of 2014. The radar was collocated with

a vast number of active and passive remote sensors providing continuous information about

cloud geometry, ambient conditions, and presence of supercooled liquid layers.

Addressing Question 1 from Chapter 2 (Is there a way to compare microphysical properties

such as shape and apparent density of ice crystals grown in the atmosphere and under lab-

oratory conditions? ), combined analysis of available data allowed for deriving temperature-

dependent polarizability ratios of ice crystals at the tops of mixed-phase clouds. As it was

mentioned in Chapter 2, ice crystals in mixed-phase clouds at temperatures higher than

−20 ◦C are mostly formed at water saturation conditions. During the ACCEPT campaign

thin supercooled liquid tops were observed with the polarimetric lidar PollyXT. For the

comparison data about ice crystals grown in a free-fall cloud chamber were used. The mea-

surements available from laboratory studies include accurate information about axis lengths

and mass of ice crystals grown at water saturation conditions. Even though the remote ob-

servations do not provide the exact axis ratios and apparent ice densities, polarizability ratios

retrieved from polarimetric measurements can be compared with those calculated using the

laboratory data.

Answering Question 2 (Are temperature dependencies of the shape and apparent ice den-

sity of ice crystals grown at water saturation in the atmosphere similar to those found under

laboratory conditions? ), a comparison of polarizability ratios of ice crystals investigated in

the cloud chamber and those observed close to the cloud tops showed a good agreement. At

temperatures in the range from −6 to −4 ◦C columnar-shaped particles with ξe of 1.2–1.7

and 1.4–1.8 were found in laboratory studies and remote observations, respectively. Isometric

particles with 0.8 < ξe < 1.2 occurred at temperatures near −8 and −20 ◦C. Oblate particles

investigated in the temperature range from −17 to −13 ◦C had ξe of 0.4–0.6 both in the

chamber studies and remote observations. Thus, addressing Question 3 (Can ice crystals

at the top of mixed-phase clouds be considered as pristine? ), from the good correspondence

between polarizability ratios of ice particles at the top of mixed-phase clouds and ice crys-

tals grown in laboratories, it was concluded that ice particles located close to the tops of

mixed-phase clouds are not significantly influenced by aggregation and/or riming and can

be considered as pristine in scattering models in the microwave region.

During the ACCEPT campaign only 22 simple cases available for the analysis were found.

Thus, many more polarimetric observations are required to collect a data set that can be

used for the further analysis. Special attention should be paid to the analysis of spectral

polarimetric variables. As it was mentioned in Sec. 6.2, spectral polarimetry provides a
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potential for the separation of different populations of ice crystals within a cloud. The

separation of ice populations can reduce classification errors and give a potential to study

newly produced small ice crystals, which are often masked by the presence of large aggregates

in integrated polarimetric variables.

In Sec. 5.3 it was shown that vertical profiles of the polarizability ratio can be used for the

characterization of ice-phase evolution. Such characterization is helpful for the investigation

of large ice particles such as aggregates and graupel, which often form precipitation at the

ground. In order to take into account wind-shear effects, which are frequently present in

precipitating cloud systems, polarimetric methods should be accompanied by known fall-

streak tracking algorithms (e.g., Kalesse et al. [2015]). In addition, as it was mentioned in

the introduction section, the quantitative description of the ice particle shape enables the

estimation of particle number size distribution and ice mass flux [Bühl et al., 2016] using

radar Doppler spectra.

As it was shown in Sec. 4.6, the developed hybrid-mode Ka-band cloud radar provides

a large set of spectrally resolved polarimetric variables, which still have to be interpreted

for the case of large particles when Mie-scattering effects occur. For instance, Matrosov

et al. [1999] showed an “oscillation” dependence of polarimetric variables at Ka-band for

drops larger than 0.3 mm. Hence, spectral polarimetric variables can be used for improving

quantitative precipitation estimation. Such effects are expected to be even more pronounced

at W-band. Therefore, there is a great potential of a combination of polarimetric, Doppler,

and multi-frequency analysis in cloud radars.



99

Bibliography

Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, B. Rudolf,

U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin

(2003), The version-2 global precipitation climatology project (GPCP) monthly pre-

cipitation analysis (1979–Present), Journal of Hydrometeorology, 4, 1147–1167, doi:

10.1175/1525-7541(2003)004〈1147:TVGPCP〉2.0.CO;2.

Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komp-

pula (2009), Portable Raman lidar PollyXT for automated profiling of aerosol backscatter,

extinction, and depolarization, Journal of Atmospheric and Oceanic Technology, 26, 2366–

2378, doi:10.1175/2009JTECHA1304.1.

Andreae, M. O. (2009), Correlation between cloud condensation nuclei concentration and

aerosol optical thickness in remote and polluted regions, Atmospheric Chemistry and

Physics, 9, 543–556, doi:10.5194/acp-9-543-2009.
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JOYCE: Jülich observatory for cloud evolution, Bulletin of the American Meteorological

Society, 96, 1157–1174, doi:10.1175/BAMS-D-14-00105.1.

Luke, E. P., P. Kollias, and M. D. Shupe (2010), Detection of supercooled liquid in mixed-

phase clouds using radar Doppler spectra, Journal of Geophysical Research (Atmospheres),

115, D19201, doi:10.1029/2009JD012884.

Mace, G. G., A. J. Heymsfield, and M. R. Poellot (2002), On retrieving the micro-

physical properties of cirrus clouds using the moments of the millimeter-wavelength

Doppler spectrum, Journal of Geophysical Research (Atmospheres), 107, 4815, doi:

10.1029/2001JD001308.

Marcuvitz, M. (1965), Waveguide Handbook, 428 pp., Dover Publications, Inc.

Martner, B. E., and K. P. Moran (2001), Using cloud radar polarization measurements to

evaluate stratus cloud and insect echoes, Journal of Geophysical Research (Atmospheres),

106, 4891–4897, doi:10.1029/2000JD900623.



108 BIBLIOGRAPHY

Martucci, G., and C. D. O’Dowd (2011), Ground-based retrieval of continental and marine

warm cloud microphysics, Atmospheric Measurement Techniques, 4, 2749–2765, doi:10.

5194/amt-4-2749-2011.

Matrosov, S. Y. (1991a), Theoretical study of radar polarization parameters obtained

from cirrus clouds, Journal of Atmospheric Sciences, 48, 1062–1070, doi:10.1175/

1520-0469(1991)048〈1062:TSORPP〉2.0.CO;2.

Matrosov, S. Y. (1991b), Prospects for the measurement of ice cloud particle shape and

orientation with elliptically polarized radar signals, Radio Science, 26, 847–856, doi:10.

1029/91RS00965.

Matrosov, S. Y. (2015), Evaluations of the spheroidal particle model for describing cloud

radar depolarization ratios of ice hydrometeors, Journal of Atmospheric and Oceanic Tech-

nology, 32, 865–879, doi:10.1175/JTECH-D-14-00115.1.

Matrosov, S. Y., and R. A. Kropfli (1993), Cirrus cloud studies with elliptically polarized

Ka-band radar signals: A suggested approach, Journal of Atmospheric and Oceanic Tech-

nology, 10, 684–692, doi:10.1175/1520-0426(1993)010〈0684:CCSWEP〉2.0.CO;2.

Matrosov, S. Y., R. A. Kropfli, R. F. Reinking, and B. E. Martner (1999), Prospects for

measuring rainfall using propagation differential phase in X- and Ka-radar bands, Journal

of Applied Meteorology, 38, 766–776, doi:10.1175/1520-0450(1999)038〈0766:PFMRUP〉2.

0.CO;2.

Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram (2001),

On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in

winter clouds, Journal of Applied Meteorology, 40, 479–490, doi:10.1175/1520-0450(2001)

040〈0479:OTUORD〉2.0.CO;2.

Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova (2005), Inferring Fall Attitudes of Pris-

tine Dendritic Crystals from Polarimetric Radar Data, Journal of Atmospheric Sciences,

62, 241–250, doi:10.1175/JAS-3356.1.

Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin

(2012), Observations of ice crystal habits with a scanning polarimetric W-band radar at

slant linear depolarization ratio mode, Journal of Atmospheric and Oceanic Technology,

29, 989–1008, doi:10.1175/JTECH-D-11-00131.1.

Matsuo, T., and N. Fukuta (1987), Experimental study of ice crystal growth below water

saturation in the university of utah supercooled cloud tunnel, Papers in Meteorology and

Geophysics, 38, 247–264, doi:10.2467/mripapers.38.247.



BIBLIOGRAPHY 109

Mazin, I. P. (2006), Cloud phase structure: Experimental data analysis and parameterization,

Journal of Atmospheric Sciences, 63, 667–681, doi:10.1175/JAS3660.1.

Mazin, I. P., and A. K. Khrgian (1989), Clouds and Cloudy Atmosphere, 647 pp., Gidrome-

teoizdat, [In Russian].

McCormick, G. C., and A. Hendry (1975), Principles for the radar determination of

the polarization properties of precipitation, Radio Science, 10, 421–434, doi:10.1029/

RS010i004p00421.

McFarquhar, G. M., and S. G. Cober (2004), Single-scattering properties of mixed-phase

arctic clouds at solar wavelengths: Impacts on radiative transfer, Journal of Climate, 17,

3799–3813, doi:10.1175/1520-0442(2004)017〈3799:SPOMAC〉2.0.CO;2.

McFarquhar, G. M., J. Um, and R. Jackson (2013), Small cloud particle shapes in mixed-

phase clouds, Journal of Applied Meteorology and Climatology, 52, 1277–1293, doi:10.1175/

JAMC-D-12-0114.1.

Mech, M., E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and

B. Stevens (2014), HAMP - the microwave package on the High Altitude and LOng

range research aircraft (HALO), Atmospheric Measurement Techniques, 7, 4539–4553, doi:

10.5194/amt-7-4539-2014.

Melnikov, V., and J. M. Straka (2013), Axis ratios and flutter angles of cloud ice particles:

Retrievals from radar data, Journal of Atmospheric and Oceanic Technology, 30, 1691–

1703, doi:10.1175/JTECH-D-12-00212.1.

Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud (2011), Mapping Bragg
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ACCEPT Analysis of the Composition of Clouds with Extended Polarization Tech-

niques

ACTRIS Aerosol, Clouds and Trace gases Research Infrastructure

CESAR Cabauw Experimental Site for Atmospheric Research

CCN Cloud condensation nuclei

FFT Fast Fourier Transformation

GDAS Global Data Assimilation System

INP Ice nucleating particle

IS Ice saturation

ITaRS Initial Training for atmospheric Remote Sensing

IWC Ice water content

KNMI Royal Netherlands Meteorological Institute

LACROS Leipzig Aerosol and Cloud Remote Observation System

LWC Liquid water content

NEXRAD Next-generation radar

NOAA National Oceanic and Atmospheric Administration

OMT Orthomode transducer

OPERA European Operational Program for Exchange of Weather Radar Infor-

mation

STSR Simultaneous transmitting and receiving

TROPOS Leibniz Institute for Tropospheric Research

UTC Coordinated Universal Time

WS Water saturation

V–QL–S Vapor–Quasi-Liquid–Solid mechanism
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List of Symbols

Symbol Description

a Width of an ice crystal

A Half-power of non-polarized part in the description basis

Aa Non-polarized component of the received signal produced by anisotropic

scattering

Acor Parameter AL corrected for the polarization coupling

Ai Parameter AL measured for isotropic scatterers

A′i Normalized Ai

AL Half-power of non-polarized part in the LDR mode

AS Half-power of non-polarized part in the slanted basis

A′S Parameter AS corrected for the polarization coupling

B Power of fully-polarized parts in the horizontal channel

Bi Parameter BL measured for isotropic scatterers

B′i Normalized Bi

BL Power of fully-polarized parts in the co-channel

BS Power of fully-polarized parts in the cross-channel in the slanted basis

B′S Parameter BS corrected for the polarization coupling

Bhh, Ḃhv,

Ḃvh, Bvv Elements of B

Bxx, Ḃxc,

Bcc Elements of BS

BTc, BTx Thresholds applied for the signal detection in the co- and cross-channel

B′xx, B
′
cc Elements Bxx and Bcc corrected for noise levels

B̂hh, B̂hv,

B̂vh, B̂vv Modeled elements of the coherency matrix

Ḃ′hv, B
′
vv Elements Ḃhv and Bvv corrected for the amplification difference

B Spectral coherency matrix

B′ Spectral coherency matrix corrected for the amplification difference

BS Spectral coherency matrix in the slanted polarization basis

B′S Spectral coherency matrix in the slanted polarization basis corrected for

noise levels
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Symbol Description

c Height of an ice crystal

C Powers of fully-polarized parts in the vertical channel

C0 Constant in Eq. (2.3)

Ca Fully-polarized component of the received signal produced by anisotropic

scattering

Ccor Parameter CL corrected for the polarization coupling

Ci Parameter CL measured for isotropic scatterers

C ′i Normalized Ci

CL Power of fully-polarized parts in the cross-channel

CS Powers of fully-polarized parts in the co-channel in the slanted basis

C ′S Parameter CS corrected for the polarization coupling

d1, d2 Depolarizing factors

D Covariance of signals in the horizontal and vertical channels

ḊL Covariance of signals in the co- and cross-channels in LDR mode

DS Covariance of signals in the co- and cross-channels in the slanted basis

Ec,x Amplitudes of signals in the co- (c) and cross- (x) receiving channel

EZDR,

ERHV , Es Error functions related to Eqs. (5.41) – (5.43)

Ėc,x Complex amplitudes of signals in the co- (c) and cross- (x) receiving channel

Ėh,v Complex amplitudes of the received signals in the horizontal and vertical

channels

Ėth,tv Complex amplitudes of the transmitted signals in the horizontal and verti-

cal channels

eh, ev, ez Unit vectors forming the measurement coordinate system

fr Pulse repetition frequency

ḟcc,cx,xc,xx Elements of FFF

F1 − F11 Related to Eqs. (5.17) – (5.27)

Fcc,cx,xc,xx Normalized amplitude antenna patterns

FFF Matrix form of receiving antenna patterns

FFF′ Matrix form of normalized receiving antenna patterns

FFFR Rotational operator

H1,2,3 Related to Eqs. (3.6)–(3.8)

i Imaginary unit

I Unit matrix

Ic, Ix In-phase components in the co- and cross-channels

Ih, Iv In-phase components in the horizontal and vertical channels

ICPR Integrated cross-polarization ratio

ICPRub Upper bound of ICPR



123

Symbol Description

Jcc, J̇cx,

J̇xc, Jxx Elements of the coherency matrix J

J Coherency matrix in LDR mode

k0 Free-space wavenumber

Ka Correction coefficient related to Eq. (4.8)

Kn Correction coefficient related to Eq. (4.34)

KDP Specific differential phase shift

LDR Linear depolarization ratio

LDRcor LDR corrected for the polarization coupling

LDRi LDR for isotropic particles

m Mass of an ice crystal

N Number of scatterers in the scattering volume

Nc, Nx Noise levels in the co- and cross-channels

NF Number of pulses used for FFT

Nh, Nv Noise levels in the horizontal and vertical channels

Ns Number of spectra for averaging

p1,2 Polarizability elements

P1,2 Related to Eqs. (5.28) and (5.29)

Pc,x Powers in the co- and cross-channel

Q Related to Eq. (4.16)

Qc, Qx Quadrature components in the co- and cross-channels

Qh, Qv Quadrature components in the horizontal and vertical channels

r Distance to a scatterer

rs Distance to the scattering volume

R Factor related to Eq. (5.32)

R1,2 Related to Eqs. (3.10) and (3.11)

Ṡh, Ṡv Discrete complex spectra in the horizontal and vertical channels

Ṡhh, Ṡhv,

Ṡvh, Ṡvv Elements of the matrix S

(Ṡhh)Σ,

(Ṡhv)Σ,

(Ṡvh)Σ,

(Ṡvv)Σ Elements of the matrix SΣ

si Area of the i-th crystal surface

SLDR Slanted linear depolarization ratio

ŜLDR Modeled slanted linear depolarization ratio

SNR Signal-to-noise ratio

SNRh,v Signal-to-noise ratios of signals in the horizontal (h) and vertical (v) receiv-

ing channel
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Symbol Description

S Scattering matrix for a single particle

SΣ Scattering matrix of a scattering volume

T1,2 Related to Eqs. (5.30) and (5.31)

V Volume of an approximating spheroid

W Probability density function

Zh Equivalent radar reflectivity factor

ZDR Differential reflectivity

ẐDR Modeled differential reflectivity

α1,2,3 Phase differences

β Orientation angle of the polarization plane of the transmitted signal

γ Argument of J̇cx

δ Backscattering differential phase shift

∆G Total free energy of a crystal

∆Gi Free energy of the i-th crystal surface

∆φbs Phase shift produced by atmospheric scatterers

∆φps Phase shift introduced by the phase shifter

∆φrp Phase shift caused by the difference in the electrical path lengths between

the reception channels

∆φR Reception phase difference

∆φtp Phase shift caused by the difference in the electrical path lengths between

the transmission channels

∆φT Transmission phase difference

∆φΣ Total phase difference between the horizontal and vertical channels

∆Φ Phase shift between the orthogonal components in the LDR mode

ε0 Vacuum permittivity

εr Relative permittivity

θ Azimuth angle with respect to the maximum of the radar beam

θ0 Mean elevation orientation of spheroids

θp Elevation orientation of the spheroid symmetry axis

Θ Parameter related to Eq. (5.32)

κ Degree of orientation

λ Wavelength

λg Wavelength in a waveguide

Λ1,2 Related to Eq. (5.6)

µ Degree of polarization

ξe Polarizability ratio

ξg Axis ratio

ρa Apparent ice density

ρb Bias in ρcx
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Symbol Description

ρcor Parameter ρcx corrected for the polarization coupling

ρcx Cross-correlation coefficient in LDR mode

ρhv Correlation coefficient

ρ̂s Modeled cross-correlation coefficient in the slanted basis

ρ̂hv Modeled correlation coefficient

ρs Cross-correlation coefficient in the slanted basis

σ Standard deviation

σi Work spent in forming a unit of the i-th crystal surface

φ Elevation angle with respect to the maximum of the radar beam

ϕp Azimuth orientation of the spheroid symmetry axis

Φ Related to Fig. 3.9

Φc,x Phases of signals in the co- (c) and cross- (x) receiving channel

ΦDP Differential phase shift

ψ Elevation angle

ωk Spectral components for a spectral line k

ωn Spectral components with SNR in both channels higher than 30 dB

Ω Solid angle
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