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Referat:

Im Rahmen der vorliegenden Arbeit wurde eine neuartige Lidartechnik in ein leistungsstar-

kes Lidar-System implementiert. Mit Hilfe des realisierten Aufbaus wurden Aerosol-Wolken-

Wechselwirkungen in Flüssigwasserwolken über Leipzig untersucht.

Die angewandte Messmethode beruht auf der Detektion von Licht, das an Wolken-

tröpfchen mehrfach in Vorwärtsrichtung gestreut und an Stickstoffmolekülen inelastisch

zurückgestreut wurde. Dabei werden zwei Gesichtsfelder unterschiedlicher Größe verwendet.

Ein Vorwärtsiterations-Algorithmus nutzt die gewonnenen Informationen zur Ermittlung von

Profilen wolkenmikrophysikalischer Eigenschaften. Es können der Extinktionskoeffizient, der

effektive Tröpfchenradius, der Flüssigwassergehalt sowie die Tröpfchenanzahlkonzentration

bestimmt werden. Weiterhin wird die exakte Erfassung der Wolkenunterkantenhöhe durch

die eingesetzte Messtechnik ermöglicht. Darüber hinaus ist die Bestimmung von Aerosolei-

genschaften mit dem eingesetzten Lidargerät möglich.

Die Qualität des realisierten Messaufbaus wurde geprüft und eine Fehleranalyse durch-

geführt. Unter anderem wurde der aus einer Wolkenmessung bestimmte Flüssigwassergehalt

mit einem Mikrowellen-Radiometer bestätigt.

Anhand von Fallbeispielen konnte das Potential dieser Messtechnik demonstriert werden.

Die Bedeutung von Profilinformationen von Wolkeneigenschaften für die Untersuchung von

Aerosol-Wolken-Wechselwirkungen wurde gezeigt. Weiterhin wurde mit Hilfe eines Doppler-

Windlidars der Einfluss der Vertikalwindgeschwindigkeit auf Wolkeneigenschaften und damit

Aerosol-Wolken-Wechselwirkungen verdeutlicht.

Neunundzwanzig Wolkenmessungen wurden für eine statistische Auswertung bezüglich

Aerosol-Wolken-Wechselwirkungen genutzt. Dabei konnte erstmalig die Abhängigkeit von

Aerosol-Wolken-Wechselwirkungen von der Wolkeneindringtiefe untersucht werden. Es wurde

festgestellt, dass diese auf die untersten 70 m von Wolken beschränkt sind. Weiterhin wurden

deutlich stärkere Aerosol-Wolken-Wechselwirkungen in Wolkengebieten festgestellt, die von

Aufwinden dominiert werden.

Für der Quantifizierung der Stärke von Aerosol-Wolken-Wechselwirkungen wurden

ACIN-Werte genutzt, welche den Zusammenhang zwischen der Tröpfchenanzahlkonzentra-

tion und dem Aerosol-Extinktionskoeffizienten beschreiben. Dabei wurde zwischen der Un-

tersuchung der entsprechenden mikrophysikalischen Prozesse und deren Bedeutung für die

Wolkenalbedo und damit dem Strahlungsantrieb der Wolken unterschieden. Für die erstge-

nannte Zielstellung wurde ein ACIN-Wert von 0.80± 0.40 ermittelt, für Letztere 0.13± 0.07.
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Chapter 1

Introduction

Global warming is one of the key issues of this century. The increase of the global mean tem-

perature due to human activities is proven [Hegerl et al., 2007]. The resulting consequences

pose serious threats to all societies all over the world [IPCC , 2007]. The occurrence of floods,

either due to heavy precipitation events or the rise of the sea level, is to increase. Floods

and droughts will affect agriculture negatively, especially in low latitudes. In some African

countries the yields from rain-fed agriculture are projected to shrink to 50% by 2020 [IPCC ,

2007]. Not only the mentioned threats constitute the high relevance of global warming but

especially its inevitable link with fundamental issues of modern societies like the critique of

economic growth and global (climate) justice.

A further point which demands a profound understanding of the earth’s climate system

is summarized under the term ’geoengineering’, denoting specific interventions in the cli-

mate system to compensate for the increased radiative forcing caused by the anthropogenic

emissions of greenhouse gases. As the severe consequences of climate change become more

obvious these methods are discussed with increased frequency not only in science [Partanen

et al., 2012; Latham et al., 2012; Storelvmo et al., 2013; Katz , 2010] but also politics [Vidal ,

2011]. Employing such methods poses great risks as various side effects and unexpected

consequences may result in an earth’s climate which is far less suitable for human life as

without these measures [Betz et al., 2011]. Thus, a sound understanding of the processes in

earth’s climate system is inevitable.

One major component in the earth’s climate system are aerosols. These particles scatter

and absorb incoming solar and outgoing terrestrial radiation and thus influence the radia-

tive budget of the earth [Forster et al., 2007]. This so-called direct aerosol effect is rather

straightforward to assess by direct measurements [Holben et al., 2001]. Beyond that, aerosol

particles affect the radiative budget of earth through the interaction with clouds. There

are manifold aerosol-cloud interactions. Some of them lead to a net cooling effect on global

climate, others have a net warming effect [Twomey , 1977; Albrecht , 1989; Pincus and Baker ,

1994; Han et al., 2002; Guo et al., 2007; Ackerman et al., 2000, 2004]. One important ex-

ample for aerosol-cloud interactions is the Twomey effect, where aerosols, acting as cloud

condensation nuclei (CCN), increase the cloud droplet number concentration (CDNC), which
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leads to a brightening of the cloud and a cooling of earth [Twomey , 1974, 1977]. Further

aerosol-cloud interactions are introduced in Chapter 2.

Aerosol-cloud interactions in general and the Twomey effect in particular have a high

share in the change of radiative forcing from the start of the industrial era (about 1750)

to the present [Forster et al., 2007]. Furthermore, besides other aerosol-cloud interactions,

the Twomey effect is discussed intensively to be used for geoengineering methods [Partanen

et al., 2012; Latham et al., 2012]. This constitutes the high need for a deeper understanding

of the Twomey effect. The object of the present work is to contribute significantly to this

aim.

This mission is challenging as aerosol-cloud interactions are highly complex. It is de-

manding to isolate the relevant effects from the multitude of feedbacks and interactions for a

profound investigation. The coupling of aerosol-cloud interactions with meteorological con-

ditions and cloud dynamics constitutes a further enormous challenge [Brenguier et al., 2003;

Ackerman et al., 2004; Lu and Seinfeld , 2005; Mauger and Norris, 2007; Guo et al., 2007].

Thus, it is extremely difficult to quantify the magnitude of aerosol-cloud interactions.

Regarding the change of the radiative forcing due to human activity, the radiative forcing

attributed to the Twomey effect has the largest uncertainty of all relevant effects, considered

in the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC)

[Forster et al., 2007]. The published values for the magnitude of the Twomey effect differ by

more than one order of magnitude, which results in a high uncertainty of the corresponding

radiative forcing [McComiskey and Feingold , 2008, 2012].

These overwhelming differences can be partially attributed to the usage of different mea-

surement techniques [McComiskey and Feingold , 2008, 2012], each having its own short-

comings for the highly demanding task to quantify the Twomey effect. Airborne in-situ

measurements, which provide detailed information about aerosol and cloud properties, are

very costly and thus cannot be run on a long-term basis. Long-term studies on a global

scale can be performed with satellite observations. These approaches in turn suffer from

the problem that aerosol and cloud properties cannot be derived at the same location and

thus information of neighboring, coarse analysis pixels have to be correlated. Ground-based

measurements allow long-term measurements of cloud and aerosol properties, but are limited

to point measurements without global validity. The advantages and problems of the different

measurement approaches are explained in more detail in Chapter 2.

These challenges illustrate the need not only for the enhancement of existing measurement

techniques, but for the development of new, profound measurement techniques for the inves-

tigation of aerosol-cloud interactions in general and the Twomey effect in particular. Thus,

a keystone of the present work is the implementation and characterization of the new and

unique dual-field-of-view (dual-FOV) Raman lidar technique. This ground-based remote-

sensing technique permits the investigation of the Twomey effect with a single-instrument

approach and is distinguished through the simultaneous, height-resolved measurement of

aerosol and cloud properties and a high accuracy at cloud base.
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A further keystone of this work is the application of the dual-FOV Raman lidar tech-

nique for the examination of aerosol-cloud interactions. This was done by means of several

case studies as well as a statistical approach. The dual-FOV Raman lidar measurements

were performed at the Leibniz Institute for Tropospheric Research (TROPOS), which is a

facility for excellent aerosol and cloud research. Besides laboratory and modelling studies

as well as ground-based and airborne in-situ measurements, the institute runs a supersite

for ground-based remote sensing of aerosol and cloud properties. Hence, combined measure-

ments of the dual-FOV Raman lidar with further remote-sensing instruments were facilitated.

Thereby, the TROPOS Doppler wind lidar for the measurement of the vertical wind speed

is of particular importance because the vertical wind speed is one of the major influences for

aerosol-cloud relationships [Feingold et al., 2003; Kim et al., 2008; McComiskey et al., 2009].

After this introduction, Chapter 2 gives an overview about the most important aerosol-

cloud interaction processes. Furthermore, several approaches to examine these interactions

are explained with regard to their advantages and shortcomings. In Chapter 3 the instru-

ments employed for this research are described. In this work, aerosol properties are derived

with Raman lidar measurements. The applied methods are introduced in Chapter 4. The

new dual-FOV Raman lidar technique was employed for the first time to derive cloud micro-

physical properties. Chapter 5 introduces this technique. Its basic principles are explained,

the implementation of the technique and the measurement setup are described, and quality

checks of the lidar setup and the methods for the analysis of the dual-FOV Raman lidar

measurements are presented. A measurement example is given in Chapter 6. Furthermore,

this chapter includes a comprehensive error analysis of the implemented dual-FOV Raman

lidar technique. The following two chapters present the performed studies of aerosol-cloud

interactions. Chapter 7 explains case studies. These studies cover aerosol-cloud interactions

related to the Twomey effect, a comparison of the CDNC at cloud base and CCN number

concentration below cloud, as well as the influence of the vertical wind speed on cloud micro-

physical properties. A statistical approach to quantify aerosol-cloud relationships related to

the Twomey effect is presented in Chapter 8. The work is completed with Chapter 9, which

contains a summary.
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Chapter 2

Aerosol-cloud interactions

In the previous chapter, the need for a profound understanding of aerosol-cloud interactions

was motivated. As these interactions are a major topic of this work, they are explained

in more detail in the first section of this chapter. Afterwards, a survey of state-of-the-art

methods for the investigation of aerosol-cloud interactions is given. Here, as well as through-

out the entire present work, exclusively pure water clouds are considered with the intention

to pursue a clearly defined objective. However, it should be mentioned that ice-containing

clouds and the corresponging aerosol-cloud interactions, e.g., heterogenous ice nucleation,

are also important for the earth’s radiative budget and require further investigation [Seifert

et al., 2007; Fridlind et al., 2007; DeMott et al., 2010; Eidhammer et al., 2010; Kanitz et al.,

2011; Field et al., 2011].

2.1 Aerosol-cloud interactions: Fundamentals

Besides the direct effect of aerosol on the earth’s radiation budget by the scattering and

absorption of radiation [Forster et al., 2007], aerosols affect climate through aerosol-cloud

interactions. An example for the possible impact of aerosol particles on clouds is illustrated

in Fig. 2.1, presenting the effect of the exhaust of large ships on cloud properties. These

so-called ship tracks were already investigated by Radke et al. [1989]. The most important

aerosol-cloud interactions are explained in the following paragraphs.

Indirect aerosol effects describe modifications of cloud microphysical and radiative proper-

ties through the interaction with aerosol particles which are carried into clouds with updrafts

[Forster et al., 2007; Heintzenberg and Charlson, 2009]. These modifications are achieved

through the fraction of aerosol particles that act as CCN and thus increase CDNC. One

important example for indirect aerosol effects is the Twomey effect, also named first aerosol

indirect effect or cloud albedo effect, which is depicted in Fig. 2.2 [Twomey , 1974, 1977].

This effect describes the increase of CDNC at a constant liquid-water content (LWC), which

leads to smaller cloud droplets. This implies a higher cloud albedo, generating a net cooling

effect on earth.
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Figure 2.1: Ship tracks recorded with the Moderate Resolution Imaging Spectroradiometer

(MODIS) on the Aqua satellite west of Spain and France on 27 January 2003. Top: the aerosol

particles from the exhausts along ship routes act as CCN and thus increase cloud albedo. Bottom:

the aerosols do affect the cloud radiative (optical thickness) and microphysical (effective droplet

radius) properties. The images are a courtesy of NASA’s Earth Observatory.
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decreased droplet size 
(for constant LWC)

Figure 2.2: Illustration of the Twomey effect. An increased aerosol load is carried with updrafts

into the cloud. The increase of CCN leads to an increased CDNC, decreased cloud droplet size,

and thus to an increased optical thickness, which results in an increase of the cloud albedo.

The magnitude of the involved aerosol-cloud interactions, i.e., the magnitude of the

change of cloud droplet size and CDNC for a given change of the aerosol load, depends

on several factors. First of all, the speed of the updraft, carrying the aerosol particles into

the cloud, is very important because it determines the fraction of aerosol particles getting

activated and becoming cloud droplets [Leaitch et al., 1996; Feingold et al., 2003; McComiskey

et al., 2009]. Stronger updrafts lead to higher supersaturations at cloud base and thus to a

higher fraction of activated aerosol particles. Another determining factor of the activation

process and thus the Twomey effect is the aerosol size distribution [Dusek et al., 2006].

In general, for a given updraft velocity, aerosol particles exceeding a certain size become

activated. A minor factor for the efficiency of the aerosol particles to act as CCN is the

chemical composition [Ervens et al., 2005].

A further indirect aerosol effect was described by Albrecht [1989]. The Albrecht effect,

also named second indirect aerosol effect or cloud lifetime effect, is predicted especially for

marine clouds. It describes the reduction of drizzle through the decrease of cloud droplet

size due to a higher CCN load. As drizzle is an important process for the regulation of

LWC of marine clouds, the suppression of drizzle may increase the LWC. Thereby, the cloud

lifetime is increased which leads to a higher fractional cloudiness and thus to an increase of

the global albedo, which has a cooling effect on earth. Furthermore, the reduction of drizzle

may increase cloud thickness, leading to an even higher cloud albedo [Pincus and Baker ,

1994].

The second aerosol indirect effect may also lead to a decrease of LWC at a higher aerosol

particle number concentration (APNC) and thus to an increased global warming. Han et al.

[2002] investigated the dependence of LWC on CDNC. One third of the investigated clouds

showed an LWC increase for higher CDNC as constituted above. However, another third of



8 CHAPTER 2. AEROSOL-CLOUD INTERACTIONS

the observations showed a decreasing LWC for increasing CDNC. This behavior was inves-

tigated and reproduced by model simulations [Stevens et al., 1998; Ackerman et al., 2004;

Lu and Seinfeld , 2005; Xue and Feingold , 2006; Guo et al., 2007]. Depending on cloud type,

meteorological conditions, cloud dynamics and feedback mechanisms, evaporation of liquid

water due to the smaller droplet size becomes a primary effect. The evaporation may induce

further feedbacks regarding cloud dynamics, which amplify this effect [Stevens et al., 1998;

Han et al., 2002; Ackerman et al., 2004; Lu and Seinfeld , 2005; Xue and Feingold , 2006; Guo

et al., 2007].

Liu and Daum [2002] described an indirect aerosol effect that diminishes the magnitude

of the Twomey effect and thus leads to a warming effect on earth. Field studies of marine

clouds showed an increase of the relative dispersion of the cloud droplet size distribution in

polluted air masses (see Liu and Daum [2002] and references therein). This increase leads to

a larger effective cloud droplet radius for a constant LWC and CDNC, which is in contrast

to the dependence of the effective cloud droplet radius in the Twomey effect.

Aerosol particles affect cloud properties not only by acting as CCN but also through the

absorption of solar radiation. Ackerman et al. [2000] investigated the effect of absorbing

aerosol particles (e.g., soot) on tropical, marine stratocumuli. The heating due to the ab-

sorption of solar radiation leads to a reduction of relative humidity and a stabilization of the

boundary layer. Both effects reduce the cloud cover and thus decrease the global albedo,

which has a net warming effect on global climate.

2.2 Aerosol-cloud interactions: Investigation

There are a number of measurement approaches to investigate aerosol-cloud interactions in

general and the interactions related to the Twomey effect in particular. To facilitate the

understanding of the basic ideas of these approaches, Subsection 2.2.1 clarifies the major

obstacles for these investigations. The measurement approaches are so manifold that they

differ even in their principal objective, which is explained in Subsection 2.2.2. A common

way to quantify the magnitude of aerosol-cloud interactions is introduced in Subsection 2.2.3.

This quantification is applied to the Twomey effect in Subsection 2.2.4. Afterwards, several

state-of-the-art measurement approaches to assess this effect are briefly introduced and eval-

uated.

2.2.1 Challenges for investigations of aerosol-cloud interactions

For the identification and quantification of single aerosol-cloud interactions the joint and

entangled occurrence of aerosol-cloud interactions is a major obstacle. An example is given

in the following. For satellite-based investigations of the Twomey effect the cloud albedo is

measured from above the cloud. Furthermore, it is necessary to derive the cloud’s liquid-

water path (LWP). Only with this information it is possible to distinguish between albedo

changes that are due to the Twomey effect and those that are induced by LWP changes,

which may be caused by other aerosol-cloud interactions as well (cf. Section 2.1).
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Cloud processes are manifold and complex. Thus, cloud properties are not merely in-

fluenced by aerosol-cloud interactions but from a number of further cloud processes as well,

which complicates the identification and quantification of aerosol-cloud relationships. For

instance coagulation affects cloud droplet size. As this cloud microphysical property is an

important quantity for observations of aerosol-cloud interactions, these interactions become

more disguised. The significance of coagulation increases during the lifetime of the cor-

responding air parcel. Hence, coagulation becomes more important with increasing cloud

penetration depth, because droplets are formed at the cloud base during updraft periods

when new aerosol particles are transported into the cloud, become activated, and are subse-

quently transported upwards. Furthermore, turbulence amplifies coagulation.

This leads to another major challenge for investigations of aerosol-cloud interactions,

which is the large influence of dynamics on cloud microphysical properties. Entrainment and

the subsequent deviations from an adiabatic LWC profile reduce the cloud’s optical thickness

as well as droplet size. Furthermore, various mixing processes may take place in clouds. For

example, cloud parcels containing larger droplets may be mixed into the lower cloud part

via downdrafts.

In addition, the vertical wind speed has an effect on aerosol-cloud interactions itself

[Feingold et al., 2003; Kim et al., 2008; McComiskey et al., 2009]. Hence, a profound un-

derstanding of the aerosol-cloud interactions underlying the various aerosol indirect effects

requires knowledge about the vertical wind speed. In case of the Twomey effect the updraft

velocity determines the supersaturation at cloud base and thus the fraction of activated

aerosol particles and thereby the magnitude of the resulting effect. The LWP response to

an increased aerosol load depends on the vertical air motion as well [Stevens et al., 1998;

Han et al., 2002; Ackerman et al., 2004; Lu and Seinfeld , 2005; Xue and Feingold , 2006; Guo

et al., 2007].

As aerosol-cloud interactions may affect the cloud dynamics in turn [Stevens et al., 1998;

Han et al., 2002; Ackerman et al., 2004; Lu and Seinfeld , 2005; Xue and Feingold , 2006;

Guo et al., 2007], the involved processes become even more entangled, which further com-

plicates the situation. An example is the effect of drizzle on dynamics. As mentioned in

Section 2.1, an increased aerosol load may reduce drizzle [Albrecht , 1989]. The resulting de-

creased evaporation below cloud base leads to a net warming effect, which enhances vertical

mixing [Albrecht , 1989; Stevens et al., 1998; Lu and Seinfeld , 2005].

2.2.2 Objectives of investigations of aerosol-cloud interactions

In the Subsections 2.2.5 to 2.2.7 measurement approaches to examine the Twomey effect

and the related aerosol-cloud interactions are introduced. These approaches differ strongly

in spatial and temporal resolution as well as in the observed quantities. Due to the different

contents of information, the principal objectives of investigations differ. To keep track of a

clear scientific question, it is reasonable to distinguish the objectives of the various approaches

as described in the following.
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A) Focus on microphysical processes of aerosol-cloud interactions

One major objective regarding the understanding of aerosol-cloud interactions is the inves-

tigation of the microphysical processes involved in these interactions [Twohy et al., 2005; Lu

et al., 2007, 2008; Painemal and Zuidema, 2013]. This objective demands the knowledge of

the direct response of cloud microphysical properties such as cloud droplet effective radius

and CDNC to changes in CCN number concentration without interference from other cloud

processes. On the one hand, the motivation for research related this objective constitutes its

significance for the Twomey effect. On the other hand, this objective is meaningful due to

its potential for geoengineering techniques.

This objective requires measurements with a very high spatial resolution. Besides aerosol

load and cloud properties, further important observables are the vertical wind velocity and

the aerosol size distribution. If these measurement requirements can be met with a high

temporal resolution, the detailed analyses should be confined to updraft periods because

aerosol-cloud interactions occur when aerosol particles are mixed into the cloud, become

activated, and induce aerosol-cloud interactions. Furthermore, the investigations should be

confined to the cloud base, where the aerosol is mixed in and leads to aerosol-cloud inter-

actions. Aerosol-cloud correlations observed in greater cloud penetration depths originate

mainly from the upward transport of cloud parcels which were affected by aerosol-cloud in-

teractions at the cloud base. During the transport the cloud parcels are exposed to a number

of other cloud processes which diminish the influence of aerosol particles on cloud properties.

For a successful pursuit of this objective the choice of the observed clouds is of importance

as well. It is convenient to probe thin, layered clouds, because their properties are less

influenced by cloud dynamics and thus allow the examination of the aerosol influence on

cloud microphysical properties with relatively small secondary effects. On the contrary, for

convective clouds, which exhibit much stronger vertical air motions, influences of up- and

downdrafts as well as various triggered cloud processes play a much larger role regarding the

effect on cloud microphysical properties.

B) Focus on Twomey effect and its radiative effects

Another major objective is the assessment of the Twomey effect itself, i.e., the change of

cloud albedo as a response to an altered aerosol load below the cloud, and the resulting

radiative forcing [Lebsock et al., 2008; Quaas et al., 2008; Bellouin et al., 2013]. Hence, the

effect of the aerosol intake on cloud properties, integrated over the complete cloud vertical

extent, as observed from above the cloud is of interest. This knowledge is important for the

evaluation of the role of the Twomey effect in the earth’s radiative budget as well as the

significance of the anthropogenic share in the Twomey effect for climate change.

For this aim, a global, long-term dataset is extraordinarily important to account for

regional, seasonal, and interannual variations of the various aerosol-cloud interactions

[Lohmann et al., 2007]. The measurement resolution loses its significance, because global

climate models work with horizontal resolutions of 200 × 200 km2 and timesteps of about
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Figure 2.3: Possible observables for the examination of aerosol-cloud interactions related to the

Twomey effect. Observables used in the ACI approach of McComiskey et al. [2009] (cf. Eq. (2.2)

and (2.3)) are highlighted in green in contrast to the other observables shown in reddish color.

20 minutes [Lohmann et al., 2007]. Processes that act on smaller spatial scales or shorter

temporal scales have to be parameterized. For investigations targeting at this objective

a detailed microphysical understanding and the isolation of the Twomey effect from other

mechanisms is not important as the sole correlation of aerosol load with cloud properties

and thus radiative effects will be of major significance for climate models. The distinction

between the Twomey effect and other mechanims which also influence the radiative budget

loses its relevance.

2.2.3 Quantification of aerosol-cloud interactions

For the investigation of aerosol-cloud interactions proxies have to be used to describe aerosol

as well as cloud properties. Fig. 2.3 illustrates a number of possible observables. The aerosol

load below the cloud can be characterized with the aerosol extinction coefficient [Feingold

et al., 2003], its height-integrated value, the aerosol optical depth [Kaufman and Fraser ,

1997], the light scattering coefficient [Kim et al., 2008], the aerosol index [McComiskey

et al., 2009], the APNC [Lu et al., 2007, 2008; Painemal and Zuidema, 2013], and the CCN

number concentration [McComiskey et al., 2009]. The aerosol index is the product of the

aerosol optical thickness and the Ångström exponent, which is explained in Subsection 4.2.4.

Compared to the optical thickness as a proxy for the aerosol load, smaller particles, which

can still act as CCN, have a stronger influence on this quantity.

The response of the cloud to the aerosol properties can be investigated in regard to the

cloud optical thickness, cloud droplet size, or CDNC. Regarding droplet size, a quantity

representing a meaningful average has to be found as the numerous droplets in a cloud
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volume are of different size. For research related to the Twomey effect the utilization of the

effective radius

re =

〈
r3
〉

〈r2〉
=

∫
r3n(r)dr∫
r2n(r)dr

(2.1)

is common, because it constitutes the surface-area-weighted mean radius, and the particle

surface is relevant for the scattering cross section and thus radiative effects. In Eq. (2.1) r is

the radius of the corresponding droplet and n(r) describes the droplet spectrum with respect

to r in the considered cloud volume.

For investigations of aerosol-cloud interactions related to the Twomey effect, only aerosol

and cloud properties derived at a constant LWC should be correlated (cf. Section 2.1). For

example, the cloud droplet effective radius is not only affected by aerosol-cloud interactions

but by changes of the LWC as well. An exception to this requirement are analyses where the

CDNC is employed as the proxy for the cloud response to a change of the aerosol load below

the cloud, because there is no direct microphysical link between the LWC and the CDNC.

Hence, derived datasets for investigations of aerosol-cloud relationships do not have to be

split into subdatasets according to the LWC and thus are more comprehensive. Furthermore,

biases of derived aerosol-cloud relationships, due to the finite LWC ranges, are avoided.

For a quantitative description of aerosol-cloud interactions on the basis of observations of

the aerosol particle extinction coefficient as well as cloud droplet effective radius and CDNC

McComiskey et al. [2009] introduced the ACI parameters

ACIr = −d ln re

d lnα
(2.2)

and

ACIN =
d lnN

d lnα
, (2.3)

respectively, on the basis of the work of Feingold et al. [2001]. The aerosol particle extinction

coefficient is denoted as α and N stands for the CDNC. The observables used for this

approach to investigate aerosol-cloud interactions related to the Twomey effect are shown in

green color in Fig. 2.3 in contrast to the other observables displayed in reddish color.

The authors named the parameter ACI (derived from aerosol-cloud interactions) to in-

dicate that the observed variables describe microphysical responses rather than radiative

forcings, which might be deduced from a nomenclature on the basis of the Twomey effect.

The calculation of the derivatives of the logarithms of the considered quantities was pro-

posed by Feingold et al. [2001]. Thus, the relative changes of the observed aerosol and cloud

properties, i.e.,

ACIr = −d ln re

d lnα
= − α

re

∆re

∆α
(2.4)

and

ACIN = −d lnN

d lnα
= − α

N

∆N

∆α
, (2.5)

are considered which makes the ACI values less susceptible to measurement errors.
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As ACIr and ACIN are two parameters describing the identical physical effect, there has

to be a relationship between these parameters which is the following:

ACIr = −1

3
ACIN (2.6)

[Feingold et al., 2001; McComiskey et al., 2009]. The ACI values are within the boundaries

0 < ACIr < 0.33 (2.7)

and

0 < ACIN < 1 (2.8)

and reach the maximum values of 0.33 and 1, respectively, when all aerosol particles trans-

ported into the cloud are activated to cloud droplets [Feingold et al., 2001; McComiskey

et al., 2009].

The introduced ACI values constitute convenient measures for a quantitative description

of aerosol-cloud interactions and thus for a quantitative pursuit of objective A. However, the

ACI approach can be applied to any other set of observables describing aerosol and cloud

properties, e.g., the observables shown in Fig. 2.3. Regardless of the choice of the aerosol and

cloud proxies, the ACI approach excels in its simplicity. Nevertheless, it has to be stated

that it is a strong simplification of the processes involved in the Twomey effect, because

updraft velocity as well as aerosol size distribution are not considered.

2.2.4 Calculation of magnitude of the Twomey effect from ACI values

In the previous subsection the concept of ACI values was introduced for a quantitative

pursuit of objective A. This subsection introduces a measure for a quantitative assessment of

objective B, the investigation of the Twomey effect. This measure is the quantity CAE, which

is named after the cloud albedo effect, i.e., the Twomey effect, and defined as [Painemal and

Zuidema, 2013]

CAE =
dA

dα/α
=

dA

d lnα
(2.9)

with the cloud albedo A. It describes the change of the cloud albedo for a relative change of

the aerosol extinction coefficient below the cloud, which represents the aerosol load.

The Twomey effect can be considered to consist of two processes. The first process

describes the relative change of CDNC with a relative change in aerosol load and is quantified

with ACIN.

The second process describes the change of cloud albedo with a relative change of CDNC.

This process can be quantified with the relative cloud susceptibility SR, which is defined as

[Platnick and Oreopoulos, 2008]

SR =
dA

dN/N
=

dA

d lnN
. (2.10)

Oreopoulos and Platnick [2008] derived the gobal distribution of the relative cloud suscep-

tibility from analyses of MODIS data. As the analyses were performed for four months
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(January, April, July, and October) the averages of the relative cloud susceptibilities can

be regarded as an estimate for the annual mean values. In-situ measurements confirmed

the retrieved susceptibilities for the region of the southeast Pacific Ocean [Painemal and

Zuidema, 2013]. For the region of central Germany an annual mean relative cloud suscep-

tibility of about 0.049 ± 0.008 was obtained. However, in the analyses of Oreopoulos and

Platnick [2008] a LWC of 0.3 g/m2 is assumed. To account for clouds with different mean

LWC, a scaling factor of 0.3/wc, with the mean LWC wc, has to be applied to the relative

cloud susceptibilities [Oreopoulos and Platnick , 2008].

Thus, CAE is obtained as

CAE =
dA

d lnα
=

dA

d lnN

d lnN

d lnα
= SRACIN. (2.11)

This aproach is used in this work to assess the magnitude of the Twomey effect.

Alternatively, CAE can be obtained from the direct correlation of the cloud albedo with

the aerosol load below the cloud. For this approach the cloud albedo can be estimated from

the cloud optical thickness τc with the approximation [Lacis and Hansen, 1974]

A ≈ 0.13τc

1 + 0.13τc
. (2.12)

Alternative approximations of the cloud optical thickness were given by Schwartz et al. [2002]

and Platnick and Twomey [1994].

2.2.5 Airborne in-situ measurements

Airborne in-situ measurements are applied for investigations of aerosol-cloud interactions

because of their capability of performing detailed measurements of aerosol as well as cloud

microphysical properties with high resolution. An example is the study of Lu et al. [2008]. In

this study, not only the aerosol number concentration in several size ranges and the CDNC

were measured but also the CCN concentration at several supersaturations, the aerosol and

cloud droplet size distribution, and the chemical composition of the aerosol particles. Further

measurements performed in the framework of the cited publication covered the meteorological

situation, assessing the temperature, dew point, relative humidity, pressure, and the wind

direction and speed and thus the updraft velocity as well. Besides information on further

cloud properties as the LWC, information about the up- and downwelling radiative fluxes

above and below a cloud were obtained.

Only airborne in-situ measurements are capable of providing such a multitude of aerosol

and cloud properties. Thus, this measurement approach delivers very detailed pictures of

aerosol-cloud interactions, giving access to all important determining factors and thereby

highlighting several aspects of the investigated processes. These advantages make airborne

in-situ measurements a valuable approach for the investigation of objective A, the detailed

understanding of microphysical processes of aerosol-cloud interactions.

The capability of pursuing this objective is enhanced through the performance of non-

aggregated measurements as the basic object of measurement is the particle. Thus, cloud

and aerosol properties can be observed at the scale of the cloud droplet formation process.
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The price for these advantages are the high effort and costs of these measurements. Thus,

these studies are always restricted to a limited number of case studies and unable to deliver

neither a global nor a long-time picture. Even the statistical relevance of those studies may

be questioned. Lu et al. [2008] used the data from only 22 cloud measurement flights for

their approach to determine an ACI value. Hence, this approach is not suitable for the

pursuit of objective B.

Another crucial disadvantage of airborne in-situ measurements is that the measurement

platform moves with a relatively high horizontal velocity. Even with the usage of helicopters

[Siebert et al., 2006], which are capable of moving much slower than the conventionally

employed airplanes, the high horizontal velocity does not allow the derivation of vertical

profiles of the measured quantities. This drawback might hamper a broader understanding

of the investigated processes. A further consequence from the missing profiling capability

is that aerosol and cloud properties cannot be measured simultaneously. The inability to

assess the temporal development of the observed cloud formation processes is another major

disadvantage, which results from the high horizontal speed of the measurement platform.

2.2.6 Satellite observations

Satellite measurements deliver global, long-term datasets. Thus, these measurements suit

ideally for the assessment of the Twomey effect and its radiative effect, denoted as objec-

tive B in Subsection 2.2.2. A further advantage of satellite measurements in this field is

that satellites detect the light that was scattered in clouds from above the cloud, i.e., from

the same perspective as relevant for the retrieval of the cloud albedo. On the other hand,

the low horizontal resolution of the sensors obscures processes occurring on smaller spatial

scales and thus makes this approach not suitable for research related to objective A [Mc-

Comiskey and Feingold , 2008]. Furthermore, the missing height resolution of the retrieved

cloud microphysical properties and thus the inability to retrieve cloud properties at cloud

base inhibits insights linked to objective A. The lack of wind measurements is a further point

which inhibits research related to this field.

Typically, passive remote sensors are used as in the approach by Quaas et al. [2008],

which is explained in the following as a common example for these approaches. Further,

similar studies are listed in Table 2.1 in Subsection 2.2.8. Quaas et al. [2008] used the

broadband short-wave planetary albedo, obtained from the Clouds and the Earth’s Radiant

Energy System (CERES) and cloud properties as well as aerosol optical depth retrieved

by the MODerate Resolution Imaging Spectroradiometer (MODIS). Both instruments are

onboard NASA’s satellite Terra. The aerosol optical depth is obtained with a resolution of

1◦ × 1◦, which corresponds to about 100 × 100 km2. The retrieved cloud properties (cloud

cover, cloud phase, LWP, cloud optical depth, cloud droplet effective radius) have a higher

resolution of about 20 × 20 km2. The cloud optical depth and droplet effective radius were

used to calculate the CDNC. Aerosol and cloud properties of neighboring analysis pixels were

correlated to calculate the dependence of cloud fraction, LWP, and CDNC on aerosol optical

depth. The corresponding ACIr values were calculated for 14 regions and four seasons. The



16 CHAPTER 2. AEROSOL-CLOUD INTERACTIONS

lowest values of −0.015 to +0.03 were derived over Australia and the islands of Oceania,

South America, North America, and Africa. The highest values ranged from 0.08 to 0.15

and were obtained over the North Pacific, North Atlantic, and Tropical Atlantic Ocean.

Thus, a quantitative analysis of the Twomey effect was performed and, additionally, a clear

difference of the Twomey effect over land and ocean was shown.

Although this approach seems to suit ideally to deal with objective B, the investigation

of the Twomey effect, there are a number of drawbacks. One major point is the usage of

passive instruments, which implies that the corresponding measurements are not height-

resolved. Hence, aerosol and cloud properties cannot be derived in the same gridpoint of

observation. Therefore, aerosol and cloud properties derived in neighboring grid points are

correlated, which is a possible source of error. A further reason for a possible decoupling

of aerosol and cloud properties is the missing information on the heights of the aerosol and

cloud layers. For large height differences decoupling is expected.

Both problems might be overcome with further advances of the measurement approach.

For example, combinations of weather or transport model simulations with satellite obser-

vations are used. In this approach, aerosol properties are retrieved in cloudy regions from

model simulations which assimilate aerosol properties obtained from satellite observations

in cloud-free regions [Bréon et al., 2002; Chameides et al., 2002; Bellouin et al., 2013]. The

height of the observed aerosol and cloud layers can be obtained from satellite-based active

remote-sensing instruments. Costantino and Bréon [2013] analyzed combined MODIS and

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data with

high horizontal resolutions ranging from 1 × 1 to 10 × 10 km2. The authors used the lidar

measurements to check if aerosol and cloud layers were located in heights which allow them

to interact. Only cases in which an interaction was possible were used to investigate the

Twomey effect. The authors showed that the aerosol load has a considerable effect on the

cloud properties when appearing in the corresponding height, but cloud droplet size does

not show any evident change with change of the aerosol load for aerosol layers located well

above cloud layers.

Despite of these advances there remain a number of problems which hamper studies of

aerosol-cloud interactions using satellite observations. The distinction between cloudy and

cloud-free regions may be ambigiuos which handicaps the distinction between aerosol and

cloud properties. This problem is especially severe for thin clouds with a low optical thick-

ness. Furthermore, the properties of those clouds cannot be properly analyzed with passive

satellite measurements. Hence, these clouds are not considered in several satellite studies

(e.g., Quaas et al. [2008]), which may imply a bias of these studies. Moreover, multilayered

clouds are excluded from those analyses (e.g., Quaas et al. [2008]). The retrievals employed

for the evaluation of the measured data have their limitations as well. Bright surfaces (e.g.,

desert, snow, or ice-covered surfaces) as well as high latitudes constitute problems for the

aerosol retrievals and thus are excluded in the corresponding studies (e.g., Quaas et al.

[2008]). Furthermore, the assumptions made for the retrieval are not always explicitly stated

and may lead to oversimplifications of the investigated problems. Additionally, in most stud-
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ies the horizontal resolution is too low to investigate small clouds, which are most susceptible

to aerosol-cloud interactions [Kaufman et al., 2005].

2.2.7 Ground-based remote sensing

Several ground-based remote-sensing techniques exist for the measurement of aerosol and

cloud properties. Multiwavelength Raman lidars can be employed to derive various aerosol

properties, as explained in detail in Chapter 4. The aerosol load can be quantified with the

aerosol particle extinction coefficient. Furthermore, inversion techniques can be applied to

retrieve aerosol microphysical properties, e.g., number concentration and complex refractive

index. Cloud properties can be determined with cloud radar and microwave radiometer

(MWR) probings (cf. Sections 3.3 and 3.4). These measurements deliver information about

the CDNC, droplet size, LWC, and LWP. Further examples for ground-based remote-sensing

techniques for the retrieval of cloud properties are given below. The dual-FOV Raman li-

dar technique, which was employed for this work and is explained in Chapter 5, constitutes

another active remote-sensing technique for the measurement of cloud microphysical prop-

erties. Hence, a number of aerosol and cloud properties can be retrieved with ground-based

remote-sensing techniques, which permits investgations of aerosol-cloud interactions.

A first investigation of aerosol-cloud interactions with active ground-based remote mea-

surements, which did not rely on additional ground-based in-situ measurements, was carried

out by Feingold et al. [2003]. The authors used Raman lidar measurements to derive the

aerosol particle extinction below clouds as a measure for the aerosol load. Cloud proper-

ties were obtained from Doppler radar and MWR measurements, employing the retrieval

algorithm of Frisch et al. [2002]. Thus, under the assumption of a height-constant CDNC,

the CDNC and the profile of the effective radius were determined. Furthermore, the LWP,

obtained from the MWR, was used to group the measurements for avoiding effects of the

LWP on the effective radius. With the knowledge of the vertical wind velocity, measured

with the Doppler radar, the analysis was restricted to updraft regions with updrafts stronger

than 0.1 m/s. Hence, the study focuses on activation events to avoid influences from other

cloud processes on the measured quantities. In this study ACIr values from 0.02 to 0.16

were derived. Airmasses with marine origin yielded higher ACIr values than those with

continental origin. An average ACIr value of 0.1 was obtained.

Other studies about aerosol-cloud interactions use ground-based in-situ measurements to

quantify the aerosol load below the cloud [Garrett et al., 2004; Kim et al., 2008; McComiskey

et al., 2009]. Thus, these studies are capable of retrieving a number of aerosol properties in

detail but are restricted to the investigation of comparably low clouds within a well-mixed

boundary layer to assure that the aerosol properties on ground are representative for the

aerosol load directly below cloud base.

The studies of Garrett et al. [2004], Kim et al. [2008], and McComiskey et al. [2009] show

the multitude of possibilities for the retrieval of cloud microphysical properties. Garrett et al.

[2004] use measurements of radiative fluxes in combination with a radiative-transfer model,

supported by MWR measurements to obtain the LWP and radar measurements to detect the
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cloud boundaries. Thus, they derive the cloud droplet effective radius, optical thickness, and

LWP. For the derivation of these properties Kim et al. [2008] employ an inversion method

using data from a multi-filter rotating shadowband radiometer and MWR, supported by

radar measurements to detect the cloud boundaries. McComiskey et al. [2009] derive the

cloud droplet effective radius, optical thickness, and LWP from combined measurements of

a two-channel narrow-field-of-view radiometer and an MWR.

Compared to airborne and spaceborne measurements ground-based measurements are

comparatively simple and low-priced, which makes long-term studies affordable. This point

is important for the pursuit of objective B. The restriction of these measurements to one

location seems to prevent significant contributions to this objective. However, this hindrance

can be overcome with the setup of measurement networks, which is a common strategy to

derive results with validity for a larger region, a continent or even the global scale. Ex-

amples are the worldwide measurement network of sunphotometers AERONET (Aerosol

Robotic Network) [Holben et al., 1998], the European network of cloud radar measurements

CLOUDNET [Illingworth et al., 2007], and a number of lidar networks such as the European

Aerosol Research Lidar Network (EARLINET) [Bösenberg et al., 2003; Wandinger et al.,

2004; Pappalardo et al., 2009], the Micro Pulse Lidar Network (MPLNET) [Welton et al.,

2001], the Asian Dust Network (ADNet) [Murayama et al., 2001], and the Latin-American

Lidar Network (LALINET) [Antuna et al., 2012]. However, it has to be mentioned that the

setup of measurement networks with complex measurement systems requires a large effort

regarding the homogenization of the measuring instruments and data analysis methods as

well as the quality assurance of every single instrument which is part of the network [Matthais

et al., 2004; Böckmann et al., 2004; Pappalardo et al., 2004; Freudenthaler , 2008].

Regarding the pursuit of objective B, the utilization of ground-based remote-sensing

techniques also bears several advantages compared to the alternatively utilized satellite ob-

servations. The height-resolved aerosol and cloud measurements, possible with active remote-

sensing instruments, permit that solely properties of aerosol and cloud layers are correlated

that are derived in similar altitudes and thus are supposed to be coupled. Furthermore,

ground-based remote-sensing techniques permit the derivation of more observables than satel-

lite techniques, e.g., the vertical wind speed and aerosol number concentration, and thus lead

to more meaningful measurements. The retrievals of aerosol and cloud properties with active

ground-based remote-sensing techniques are simpler and require less assumptions than the

corresponding satellite retrievals. An example is the aerosol particle extinction coefficient

which is obtained with Raman lidar measurements without any assumptions. In contrast,

the satellite retrievals for the derivation of the aerosol optical thickness are complex and need

additional information such as the albedo of the corresponding earth’s surface.

Ground-based remote-sensing techniques are also capable of investigating issues related

to objective A because the temporal and spatial resolutions of most remote-sensing tech-

niques are adequate for this ambition [McComiskey and Feingold , 2012]. Airborne in-situ

instruments provide more detailed measurements than ground-based techniques in regard to

the number of derived aerosol and cloud properties. However, the key parameters as cloud
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droplet size and number concentration, cloud LWC, aerosol extinction coefficient, aerosol

type, and updraft velocity can be assessed with ground-based remote-sensing measurements.

Ground-based active remote-sensing techniques also have several advantages over air-

borne in-situ measurements regarding the investigation of aerosol-cloud correlations. First

of all, the profile information of the derived quantities is of importance. With active ground-

based techniques, cloud properties can be observed directly at cloud base where the aerosol

particles are mixed into the cloud. The derivation of cloud mean values or the utilization of

cloud properties in an arbitrary cloud penetration depth, which is done in several studies em-

ploying airborne in-situ measurements, cannot lead to results of equal quality. Furthermore,

the profiling information is important to assess the dependence of aerosol-cloud interactions

on cloud penetration depth. This information constitutes the link between the microphysical

processes of aerosol-cloud interactions and the resulting albedo change and thus radiative

effect. A conjunction of the insights related to objective A and B is established through this

link.

Furthermore, the temporal evolution of a cloud can be investigated through stationary

measurements. Information about the lifecycle of a cloud from its formation to its dissolution

are relevant for the understanding of a number of cloud processes, including aerosol-cloud in-

teractions: at the beginning of the cloud’s lifecycle its properties might be stronger influenced

by the activation of aerosol particles than towards the end of its lifespan when entrainment

gains significance, leading to the dissolution of the cloud.

Summarizing, one may assert that ground-based active remote-sensing techniques are at

least equally adequate for the pursuit of objectives A and B as airborne in-situ and satellite

approaches, respectively. Ground-based techniques even exhibit some advantages. However,

the major advantage of ground-based measurement techniques is the capability of performing

investigations for both objectives. Hence, results from research related to both objectives can

be combined and justified. Thus, it can be studied to what extent aerosol-cloud interactions,

which are initialized at cloud base, influence cloud properties in larger penetration depths

as well and what is the resulting overall albedo effect. Likewise, it can be studied which

magnitude of aerosol-cloud interactions is required for an obtained albedo change associated

with a certain radiative forcing and if aerosol-cloud interactions of this magnitude occur

globally often enough to be relevant for the earth’s radiative budget.

2.2.8 Summary of ACI values from other studies

Results of ACI values from several investigations of aerosol-cloud relationships are given in

Table 2.1, sorted according to the approaches introduced in the Subsections 2.2.5 to 2.2.7.

For these investigations different proxies for aerosol as well as cloud properties were used.

The choice of the quantity describing cloud properties, i.e., the cloud optical thickness,

cloud droplet size, and CDNC has no direct influence on the results as the obtained ACI

values can be converted into one another (cf. Eq. (2.6), [Feingold et al., 2001; McComiskey

et al., 2009]). In the listed studies the aerosol load is described with the aerosol particle

extinction coefficient α, the aerosol optical thickness τa, the light scattering coefficient σsp,
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the aerosol index AI, the APNC Na, or the CCN concentration NCCN. Only in cases for

which the aerosol size distribution and type do not vary considerably, approaches employing

these different proxies yield identical results because the corresponding ACI values are not

physically equivalent. Although this complicacy is to be kept in mind, the comparison

with the measurement uncertainties and especially the various obstacles of the approaches

introduced in the Subsections 2.2.5 to 2.2.7 shows that the choice of different aerosol proxies

are a minor source for differences between the corresponding ACI values. The proxies used

to describe the aerosol load are listed in Table 2.1.

The obtained ACIr parameters have a spread from 0.02 to 0.33 and thus cover almost the

entire range of possible values (cf. Subsection 2.2.3). These large discrepancies are partly due

to different measurement approaches and objectives as explained before. Generally, higher

ACI values are derived from airborne in-situ measurements, which follow objective A for

the investigation of aerosol-cloud interactions. Studies utilizing sattelite observations, which

are restricted to the pursuit of objective B, obtain lower aerosol-cloud relationships. Further

differences result from the investigation of different cloud regimes. E.g., marine clouds tend

to be stronger affected from aerosol-cloud interactions than continental clouds [Quaas et al.,

2008; Bellouin et al., 2013]. But there remain considerable differences between the results

of studies employing similar measurement approaches for the investigation of similar cloud

types. These differences point out the large uncertainties in the understanding of aerosol-

cloud interactions, which are a major obstacle for a more precise analysis of the earth’s

radiative budget [McComiskey and Feingold , 2008].
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Table 2.1: Derived ACIr values from airborne in-situ, satellite-borne remote-sensing and ground-

based remote-sensing measurements. The chosen proxy for the aerosol load is denoted in the third

column because its choice may have an influence on the derived ACIr value.

Aerosol

Authors, Year Method Proxy ACIr

Raga and Jonas [1993] Na 0.09

Martin et al. [1994] Na 0.25

Gultepe et al. [1996] Na, NCCN 0.22

O’Dowd et al. [1999] airborne, Na 0.20

McFarquhar and Heymsfield [2001] in-situ Na 0.11

Ramanathan et al. [2001] Na 0.21–0.33

Twohy et al. [2005] Na 0.27

Lu et al. [2007] Na 0.19

Lu et al. [2008] Na 0.14

Zheng et al. [2011] NCCN 0.24

Terai et al. [2012] Na 0.18

Painemal and Zuidema [2013] Na 0.25–0.31

Nakajima et al. [2001] Na 0.17

Sekiguchi et al. [2003] Na 0.07–0.1

Quaas et al. [2004] AI 0.012–0.04

Quaas et al. [2006] satellite, passive τa 0.04

Quaas et al. [2008] remote sensing τa −0.015–0.15

Kaufman et al. [2005] AI 0.046–0.174

Bulgin et al. [2008] τa 0.10–0.16

Lebsock et al. [2008] AI 0.07

Bréon et al. [2002] satellite, passive τa, AI 0.04–0.085

Chameides et al. [2002] remote sensing τa 0.17

Bellouin et al. [2013] and model τa −0.01–0.16

Costantino and Bréon [2013] satellite, passive and AI 0.15

active remote sensing

Feingold et al. [2003] α 0.1

Kim et al. [2003] ground-based σsp 0.13

Kim et al. [2008] remote sensing σsp 0.15

Garrett et al. [2004] σsp 0.15

McComiskey et al. [2009] AI,NCCN 0.14, 0.16
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Chapter 3

Instrumentation

In this chapter, the instruments and additional data sources employed for the investigation of

aerosol-cloud interactions are introduced. The described instruments are part of the Leipzig

Aerosol and Cloud Remote Observations System (LACROS), which is operated by TROPOS

[Seifert et al., 2012]. This measurement platform comprises several ground-based in-situ and

remote-sensing instruments, which are shown in Fig. 3.1. The instruments employed for

quantitative measurements in this work are highlighted in green and rose color. Coordinated

measurements were performed with these instruments to derive a comprehensive dataset of

aerosol and cloud properties as well as the vertical air motion.

Section 3.1 describes the Multiwavelength Atmospheric Raman lidar for Temperature,

Humidity, and Aerosol profiling (MARTHA), which is highlighted in green color in Fig. 3.1.

This lidar is of extraordinary importance for this work because it was utilized to derive aerosol

properties as well as cloud microphysical properties for the study of their correlation and thus

the investigation of aerosol-cloud interactions. Further instruments which were employed to

support these studies are explained in the following sections. These are the Doppler Wind

Lidar WiLi (Section 3.2), an MWR (Section 3.3), and a cloud radar (Section 3.4). The

chapter closes with Section 3.5, which deals with the Global Data Assimilation System

(GDAS). Although not being a measurement instrument but a database, GDAS is listed

here as it provides meteorological data utilized for this work. Parts of this chapter have been

published in Schmidt et al. [2013] and are adopted without explicit citing.

3.1 Raman lidar MARTHA

In the scope of the present work, the multiwavelength Raman lidar MARTHA was employed

to assess aerosol as well as cloud properties for investigations of aerosol-cloud interactions,

which makes MARTHA to the key instrument of this work. High-quality profiles of several

aerosol properties were derived with the methods presented in Chapter 4. Measurements of

cloud microphysical properties with this lidar were made possible with the implementation

of the dual-FOV Raman lidar technique, which is explained in Chapter 5.
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Figure 3.1: Instruments of the measurement platform LACROS at TROPOS. The dual-FOV

Raman lidar MARTHA is highlighted in green color. The Doppler wind lidar WiLi and the MWR

HATPRO, which are also used in this work, are highlighted with rose color.
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Nd:Yag laser
(355, 532, 1064 nm)

Beam
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Beam Separation Unit

Data Acquisition
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Figure 3.2: Scheme of the Raman lidar MARTHA. Its main parts are the Nd:YAG laser, beam

expander, receiving telescope, beam separation unit and data acquisition system.

Beyond this work, the lidar is of particular importance for TROPOS due to the perfor-

mance of long-term aerosol measurements in the framework of EARLINET as well as its

utilization as a laboratory environment for the application of novel lidar techniques [Mattis

et al., 2002; Arshinov et al., 2005; Müller et al., 2011; Ansmann et al., 2011]. Nevertheless,

this section is restricted to the most important information because a detailed description of

the system was provided by Mattis et al. [2002].

The basic setup of MARTHA is shown in Fig. 3.2. It comprises a transmitter, receiving

telescope, a beam separation unit including detectors, and a data acquisition unit. In the

following, the setup is explained in more detail.

The transmitter of MARTHA consists of a pulsed, Q-switched Nd:YAG laser operating

with a repetition rate of 30 Hz. By second and third harmonic generation, light at wave-

lengths of 532 and 355 nm, respectively, is generated. The total pulse energy is 1.4 J, with

0.3 J at 355 nm, 0.6 J at 532 nm, and 0.5 J at 1064 nm. A beam expander with a magnification

factor of 15 increases the beam diameter to 150 mm. Thus, the beam divergence is decreased

to a turbulence-limited full angle of 0.1–0.2 mrad. The emitted laser beam and the optical

axis of the receiver telescope are coaxial. The alignment of the laser beam is controlled with

a camera displaying an image of the laser beam with respect to the telescope’s FOV. Thus,

the pointing of the laser beam can be easily adjusted with two remotely controlled actuators.
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Figure 3.3: Beam separation unit of MARTHA with detection channels for the conventional lidar

data analysis. The detection channels are labeled according to the detected wavelength. In case

of polarization-sensitive detection, the plane of the detected polarization is denoted as well. The

channel “532 nm (pp)” detects light which is parallel-polarized with respect to the polarization

plane of the emitted laser light. Cross-polarized light is detected by the channel “532 nm (cp)”.

The channels “355.4 nm (T1)” and “356.3 nm (T2)” as well as the two channels which are depicted

as a box labeld “532 nm (rotational Raman scattering)” detect different parts of the rotational

Raman spectrum at 355 and 532 nm, respectively, for the retrieval of temperature profiles.

The backscattered light is received with a 0.8-m Cassegrain telescope, which has an

effective focal length of 8974 mm. The light is reflected towards the beam separation unit,

which is displayed in Fig. 3.3. There it is collimated with a system of achromatic lenses with a

free aperture of 50 mm. Afterwards, the light is separated according to its optical properties

by means of dichroic beam splitters, quartz plates, and polarizing beamsplitter cubes. It is

detected with twelve channels, named according to the detected wavelength. The resulting

signals are utilized for the conventional lidar data analysis as described in Chapter 4. The

channels “355 nm”, “532 nm”, and “1064 nm” detect elastically backscattered light for the

retrieval of profiles of the particle backscatter coefficient at the corresponding wavelength,

as explained in Subsection 4.2.1. Light that is Raman scattered from nitrogen molecules is

detected with the channels “387 nm” and “607 nm” for the determination of the profiles of

the backscatter coefficients with the Raman method and the extinction coefficients at the

corresponding wavelengths as described in Subsections 4.2.2 and 4.2.3. Further detection

channels are employed to measure the polarization of the incoming light (“532 nm (pp)” and

“532 nm (cp)”), water-vapor-to-dry-air mixing ratio (“407 nm”), and temperature (“355.4 nm

(T1)”, “356.3 nm (T2)”, and “532 nm (rotational Raman scattering)”) [Mattis et al., 2002].
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Except for the detection channels for the temperature measurement at 532 nm, which

work with two successive diffraction gratings and fiber optics, the selection of the detected

wavelengths is achieved with interference filters. In the channels detecting elastically scat-

tered light, interference filters with a full width at half maximum (FWHM) of 5.0 nm are

employed. The FWHMs for channels detecting Raman scattered light from nitrogen and wa-

ter vapor molecules are 0.5 and 0.25 nm, respectively. After these filters an optical setup of

an objective and an eyepiece is placed in the beam path. Thus, an image of the primary mir-

ror of the telescope is displayed on the photocathodes of the photomultiplier tubes (PMTs),

which are used to detected the incoming light. With this optical imaging a dependence of

the PMT sensitivity on backscattering height is avoided [Freudenthaler , 2004].

The signals from the detection channels which are relevant for this work and are shown in

Fig. 3.3 were recorded with the data acquisition system Purana from MEDAV, Uttenreuth,

Germany, until May 2012. The raw spatial resolution is 15 m covering an altitude range of

15 km. This limited height range is an obstacle for a straightforward correction of the signal

background in the case of cloud-free measurements, i.e., at measurements during cloud gaps

to assess high-quality profiles of aerosol properties. Therefore, in May 2012 the Purana

system was replaced with the new data acquisition system CNT80, developed at the Max

Planck Institute for Meteorology in Hamburg and at TROPOS. It features an increased

height resolution of 7.5 m and a larger altitude range covered by the measurements of about

45 km. Furthermore, the system allows for pretrigger data acquisition, i.e., the recording of

the measured signals several microseconds before the emission of the laser pulse, for a more

accurate correction of the signal background. Usually, the Purana as well as the CNT80

system were run with a temporal resolution of 4 s. With this comparatively high resolution,

the effect of cloud inhomogeneities on the retrieved cloud properties can be minimized (cf.

Section 5.7).

3.2 Doppler wind lidar WiLi

The container-based, mobile, coherent Doppler wind lidar WiLi measures the vertical wind

speed with an uncertainty of about 0.1 m/s. It consists of a master oscillator and a power

amplifier. In both lasers the active medium is a Tm:LuAG crystal. The lidar emits laser

pulses with an energy of 1.5 mJ at a wavelength of 2022.5 nm. The pulse repetition rate

is 750 Hz. A telescope with a free aperture of 140 mm is used for transmitting the laser

pulse as well as receiving the backscattered light. The lidar works with the heterodyne

detection method. The system derives profiles of the vertical wind velocity with a height

resolution of 75 m. A temporal averaging time of 3 s is sufficient to obtain well-analyzable

spectra. Besides measurements of the vertical component of the wind speed, WiLi is capable

of deriving the horizontal wind speed by means of conical scans which can be performed with

its fast hemispherical scanner. Further technical details can be found in Engelmann et al.

[2008] and Bühl et al. [2012]. The two-dimensional deconvolution method was employed
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by Bühl et al. [2012] to remove artifacts of the laser chirp. This method is of particular

importance for undisturbed measurements of the vertical wind velocity at cloud base.

WiLi measurements were performed at Leipzig, Germany, in the time period from 2010 to

2012. WiLi was placed close to MARTHA within a distance of about 10 m and pointed exactly

to the zenith. Thus, MARTHA and WiLi probed identical cloud volumes, considering the

averaging times required for the dual-FOV Raman lidar measurements (cf. Subsection 6.2.3).

About 100 h of combined cloud measurements with WiLi and the dual-FOV Raman lidar

MARTHA were performed in this time period, which cover approximately 100 cloud probings.

The obtained dataset was utilized to derive the vertical wind speed for the investigation of

the influence of the vertical wind speed on cloud microphysical properties (cf. Section 7.3

and Subsection 8.3.5).

3.3 Microwave radiometer

An MWR is a passive remote-sensing instrument for the detection of microwave radiation

which is emitted by the constituents of the atmosphere [Cimini and Westwater , 2010]. The

measurements are performed with several detection channels. Channels working in the fre-

quency range of 22 to 30 GHz are sensitive to water vapor and liquid water and are used to

derive the LWP of clouds as well as the integrated water vapor of the atmosphere. Further

detection channels operate at frequencies between 51 and 59 GHz to determine the temper-

ature profile, which can be obtained through elevation scanning. Since 13 March 2011, a

HATPRO MWR [Rose et al., 2005], manufactured by the Radiometer Physics GmbH, is

employed at TROPOS. Further technical details of HATPRO can be found in Radiometer

Physics GmbH [2013]. The HATPRO is located about 10 m from MARTHA and was mainly

used to derive the LWP of the probed clouds.

The typical uncertainity of LWP measurements with MWR, employing conventional data

analysis methods, is about 15 to 30 g/m2 [Westwater et al., 2001; Crewell and Löhnert , 2003;

Gaussiat et al., 2007; Ebell et al., 2011]. As LWPs of thin, layered clouds are of similar

magnitude, this large error inhibits to gain relevant information about the properties of

those clouds. However, the largest contribution to the LWP error originates from an offset of

the measured brightness temperature and only about a fifth is caused by its signal-to-noise

ratio [Crewell and Löhnert , 2003]. Hence, Gaussiat et al. [2007] introduced a method for

the correction of this offset. Ceilometer or lidar measurements are used to identify cloud-

free periods. The LWP retrieved with the HATPRO is calibrated in cloud-free periods to

0 g/m2. Thus, the error of the retrieved LWP is less than 10%, increasing with time to

the nearest clear-sky event. For most cloud probings performed in this work the dual-FOV

Raman lidar measurement itself could be used for the identification of the nearest cloud-free

time period. However, in some measurements the nearest clear-sky event occurred before or

after the corresponding dual-FOV lidar measurement. In these cases, the ceilometer which

is operated at TROPOS could be used for the identification of the clear-sky event. The
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ceilometer is located in a distance of less than 10 m from MARTHA and operated around

the clock.

3.4 Cloud radar

The application of radar in cloud research is a wide field. This section provides only a brief

overview of radar cloud probings. Details can be found in Montopoli and Marzano [2010].

Besides probings and investigations of precipitation, a major objective for meteorological

radar application is the study of cloud properties. Measurements with frequencies of 35 or

90 GHz are performed to monitor the cloud structure, i.e., cloud base and top height. Fur-

thermore, cloud microphysical properties, as for example the cloud droplet effective radius,

can be obtained when radar observations are supported with MWR probings or even ad-

ditionally with ceilometer or lidar measurements [Frisch et al., 2002; Löhnert et al., 2004;

Brandau et al., 2010; Martucci and O’Dowd , 2011]. Radar cloud probings are performed with

ground-based instruments, also within measurement networks as CLOUDNET [Illingworth

et al., 2007].

Since 11 August 2011 regular measurements are performed at LACROS with the cloud

radar MIRA-35. This instrument was manufactured by the METEK GmbH. Details of the

instrument can be found in Metek GmbH [2013]. In this work, radar measurements were

utilized for the detection of drizzle, which disturbs the lidar probings of clouds but is hard to

detect with lidar. Thus, due to the availability of radar measurements, the analysis of driz-

zling clouds could be avoided at least since August 2011. Furthermore, radar measurements

were utilized for the detction of the cloud top height.

3.5 Global data assimilation system meteorological data

For profiles of temperature and pressure, utilized in this work, data of the U. S. National

Weather Service’s National Center for Environmental Prediction (NCEP) were used. These

NCEP data are based on GDAS1 [Kanamitsu, 1989]. GDAS stores assimilated, observa-

tional, meteorological data, which are used to initialize runs of weather forecast models.

Surface observations are used as well as data from radiosondes and satellite-based instru-

ments. Meteorological standard properties are stored with a horizontal resolution of 1◦ × 1◦.

The dataset has 23 vertical layers up to about 30 km height and is available every three

hours. The GDAS grid point that is closest to Leipzig, Germany, is located at 51.10◦N and

12.50◦ E with a distance of about 25 km to TROPOS.

1Information and data of the GDAS archive available at: http://www.arl.noaa.gov/gdas.php
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Chapter 4

Standard lidar methodology: Aerosol

analysis

In this work, Raman lidar measurements, performed with MARTHA, were utilized for the

analysis of aerosol properties. The employed methods are explained here. First of all, Sec-

tion 4.1 introduces the lidar equation, which constitutes the basis for the methods explained

afterwards in Section 4.2. The descriptions are kept short as the application of these lidar

methods is common.

4.1 Lidar principle and lidar equation

Lidar is the acronym for light detection and ranging. A laser pulse is emitted into the

atmosphere. Photons that are backscattered from molecules or particles are detected with

a receiver unit, which typically consists of a telescope and a detection system. The volume

from which the telescope can receive photons is called field of view (FOV) and is in general

defined with a field stop in or close by the focal plane of the telescope. The received photons

are detected with high temporal resolution. From the time t between the emission of the

laser pulse and the detection of the backscattered photons, the height z of the scattering

volume above the lidar can be calculated from

z =
tc

2
, (4.1)

with the speed of light c, when the lidar is pointing vertically.

The lidar equation (e.g., [Wandinger , 2005])

Pλ0(z) = P0
O(z)

z2
Ciβλ0(z) exp

−2

z∫
0

αλ0(ζ)dζ

 (4.2)

describes the power Pλ0 received from the lidar from elastic backscattering at the laser wave-

length λ0. It depends on the emitted power P0, the height-independent system constant Ci
for the utilized detection channel i, the overlap function O, the volume backscatter coefficient
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βλ0 of the backscattering volume, and the volume extinction coefficient αλ0 along the path

between the backscattering volume and the lidar at the wavelength λ0.

From the photons arriving at the receiving telescope, only a height-dependent part can

pass to the beam separation unit. This fraction is the value of O in the corresponding height.

The overlap function O increases from 0 to 1 with altitude, affecting the measured signal and

thus the derived quantities in heights below it reaches 1. However, with the knowledge of the

overlap function, the measured lidar signals can be corrected for this overlap effect down to

an altitude where the gradient of the overlap function becomes too steep and thus dominates

the signal. Below this altitude, lidar data cannot be evaluated due to the overlap-implicated

loss of sensitivity of the lidar.

The backscatter coefficient βλ0 as well as the extinction coefficient αλ0 employed in the

Lidar Equation (4.2) consist of molecular (superscript mol) and particle (superscript par)

contributions. Hence, these coefficients can be split into a molecular (αmol
λ0

, βmol
λ0

) and a

particle part (αpar
λ0

, βpar
λ0

):

αλ0(z) = αmol
λ0

(z) + αpar
λ0

(z) (4.3)

βλ0(z) = βmol
λ0

(z) + βpar
λ0

(z) (4.4)

The profiles of αmol
λ0

and βmol
λ0

can be calculated for given temperature and pressure [Bucholtz ,

1995]. E.g., the molecular backscatter coefficient can be derived by

βmol
λ0

(z) = Nmol(z)σmol
λ0

Φmol
λ0

(180◦) (4.5)

with the number concentration Nmol of the scattering molecules, their scattering cross section

σmol
λ0

at the corresponding wavelength λ0, and the value of the corresponding phase function

Φλ0 (cf. Subsection 5.1.1) for scattering angles of 180◦(backscattering). Thus, the particle

backscatter and extinction coefficients remain as the only unknown quantities in the Lidar

Equations (4.2) and (4.6).

The Lidar Equation (4.2) is the basic equation for the retrieval of optical particle prop-

erties with an elastic backscatter lidar. In the case of a Raman lidar, as applied for this

work, inelastically backscattered light is detected additionally. The power PλRa
received by

the lidar from Raman backscattering by atmospheric molecules (e.g., nitrogen) is described

by

PλRa
(z) = P0

O(z)

z2
Ciβ

Ra
λ0

(z) exp

−
z∫

0

[
αλ0(ζ) + αλRa

(ζ)
]
dζ

 , (4.6)

with the the volume extinction coefficient αλRa
at the shifted wavelength λRa and the

backscatter coefficient for vibrational-rotational Raman scattering βRa
λ0

for light with a wave-

length of λ0. Similarly to Eq. (4.5), this backscatter coefficient can be derived by

βRa
λ0

(z) = NRa(z)σRa
λ0

ΦRa
λ0

(180◦), (4.7)

with the number concentration NRa of the molecules where Raman scattering events may

occur leading to the shifted wavelength λRa, the corresponding scattering cross section σRa
λ0

,

and the value of the corresponding phase function ΦRa
λ0

for backscattering.
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4.2 Data analysis

The following subsections give a brief overview about the conventional methods for the

analysis of lidar data. Details can by found in Ansmann and Müller [2005].

4.2.1 Backscatter coefficient – Klett-Fernald method

In the Lidar Equation (4.2) there is only one measured variable Pλ0 but two unknown quan-

tities α and β. Nevertheless, the backscatter and extinction coefficient can be retrieved with

the assumption of a given extinction-to-backscatter ratio Spar of the scattering particles,

which is also called lidar ratio. It is defined as

Spar(z) =
αpar(z)

βpar(z)
(4.8)

and depends on the measured wavelength and particularly the aerosol type. Thus, the

particle backscatter coefficient can be retrieved from the Lidar Equation (4.2) [Klett , 1981;

Fernald , 1984]:

βpar
λ0

(z) = −βmol
λ0

(z) +
U(z0, z)

V (z0)− 2Spar
z∫
z0

U(z0, r)dr

(4.9)

with

U(z0, z) = Pλ0(z)z2exp

−2(Spar − Smol)

z∫
z0

βmol
λ0

(ζ)dζ

 (4.10)

and

V (z0) =
Pλ0(z0)z2

0

βpar
λ0

(z0) + βmol
λ0

(z0)
. (4.11)

The extinction-to-backscatter ratio of air Smol is given by Smol = 8π
3 K [Collis and Russel ,

1976] with K being the King factor.

This approach requires the estimate of a reference value βpar
λ0

(z0). Usually, the corre-

sponding reference height z0 is chosen in an cloud-free height with a low aerosol load where

βpar
λ0

(z0)� βmol
λ0

(z0).

As the three wavelengths of 355, 532, and 1064 nm are emitted and detected by the

Raman lidar MARTHA, three particle backscatter coefficients βpar
355, βpar

532, and βpar
1064 at the

corresponding wavelengths can be retrieved.

4.2.2 Backscatter coefficient – Raman method

The assumption of a lidar ratio in the Klett-Fernald method can introduce large errors of

more than 100% [Sasano et al., 1985]. These errors are avoided with the Raman method by

the utilization of a second measured quantity, which is PλRa
. Thus, the particle backscatter
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coefficient can be obtained from the Lidar Equations (4.2) and (4.6) according to Ansmann

et al. [1992a]:

βpar
λ0

(z) =
[
βpar
λ0

(z0) + βmol
λ0

(z0)
] Pλ0(z)PλRa

(z0)NRa(z)

PλRa
(z)Pλ0(z0)NRa(z0)

×
exp

{
−

z∫
z0

[
αpar
λRa

(ζ) + αmol
λRa

(ζ)
]
dζ

}

exp

{
−

z∫
z0

[
αpar
λ0

(ζ) + αmol
λ0

(ζ)
]
dζ

} − βmol
λ0

(z),

(4.12)

with the number density of nitrogen molecules NRa, which can be calculated from the profiles

of temperature and pressure (cf. Eq. (4.7)) [Bucholtz , 1995]. The reference height z0 is to be

chosen as for the Klett-Fernald method.

An advantage of this method is the utilization of the ratio of two measured lidar signals.

As the overlap functions are identical for both signals for an ideal lidar, they cancel out in

the calculation of the signal ratio. Therefore, the Raman method can be applied even in low

altitudes where the overlap function is far from reaching 1.

4.2.3 Extinction coefficient

In the Lidar Equation for Raman backscattering (4.6) βλRa
is known via NRa from the

profiles of temperature and pressure (cf. Eq. (4.7)). Thus, the equation can be solved for

αpar
λ0

[Ansmann et al., 1990]:

αpar
λ0

(z) =

d
dz ln NRa(z)

z2PλRa
/O(z)

− αmol
λ0

(z)− αmol
λRa

(z)

1 + ( λ0
λRa

)
åα

(4.13)

with the Ångström exponent åα, which describes the wavelength dependence of the particle

extinction coefficient (cf. Eq. (4.16)). As the extinction coefficient is calculated from the

derivative of the Raman signal, even with the typically ten times larger vertical and temporal

averaging lengths and periods, respectively, its signal-to-noise ratio is significantly lower than

for methods utilizing the lidar signals directly, e. g., the methods calculating the backscatter

coefficient (cf. Subsections 4.2.1 and 4.2.2). With the two Raman detection channels of

MARTHA with the wavelengths of 387 and 607 nm the particle extinction coefficients αpar
355

and αpar
532 can be retrieved. Hence, together with the particle backscatter coefficients βpar

355

and βpar
532, the lidar ratios at 355 and 532 nm can be derived (cf. Eq. (4.8)).

4.2.4 Ångström exponent

Besides the aerosol particle backscatter and extinction coefficients and the lidar ratio the

Ångström exponent is another aerosol optical property which can be retrieved from li-

dar measurements. It describes the spectral dependence of the aerosol optical properties
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[Ångström, 1964; Ansmann and Müller , 2005]. From measurements of MARTHA, the par-

ticle backscatter-related Ångström exponents

åβ355/532 = − ln [βpar
532(z)/βpar

355(z)]

ln (532/355)
(4.14)

and

åβ532/1064 = − ln [βpar
1064(z)/βpar

532(z)]

ln (1064/532)
(4.15)

as well as the particle-extinction-related Ångström exponent

åα355/532 = − ln [αpar
532(z)/αpar

355(z)]

ln (532/355)
. (4.16)

can be derived.

4.2.5 Microphysical particle properties by inversion

Vertical profiles of aerosol microphysical properties can be derived from measured profiles

of the backscatter coefficients at three wavelengths (355, 532 and 1064 nm) and extinction

coefficients at two wavelengths (355 and 532 nm) with an inversion algorithm [Müller et al.,

1999a,b; Veselovskii et al., 2004; Ansmann and Müller , 2005; Kolgotin and Müller , 2008].

The algorithm retrieves the aerosol particle effective radius, volume concentration, APNC,

the complex refractive index, and further aerosol microphysical properties.
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Chapter 5

Dual-field-of-view Raman lidar: Cloud

analysis

This chapter deals with the dual-FOV Raman lidar technique. As multiple scattering is

the basis for dual-FOV Raman lidar measurements, Section 5.1.1 gives an introduction into

this topic. Afterwards, the principle of the dual-FOV Raman lidar technique is explained

in Section 5.2. Furthermore, this section describes the implementation of this technique in

the Raman lidar MARTHA and the quality assurance of the realized setup. The algorithm

utilized for the analysis of dual-FOV Raman lidar measurements as well as its adaptation

to the setup of the Raman lidar MARTHA is presented in Section 5.3. The retrievals of the

LWC, CDNC, and cloud base height are explained in Sections 5.4, 5.5, and 5.6, respectively.

The chapter closes with a description of the scheme for the analysis of dual-FOV Raman

lidar measurements, i.e., the pre- and postprocessing of the measured data, in Section 5.7.

Parts of this chapter have been published in Schmidt et al. [2013] and Schmidt et al. [2014]

and are adopted without explicit citing.

5.1 Lidar and multiple scattering

This section deals with the occurrence of multiple scattering in lidar measurements. After

the explanation of the principles, three lidar approaches are introduced, which make use

of multiple-scattering effects to derive information about the scattering medium. Thus, an

overview is given about the state-of-the-art lidar approaches exploiting information from

multiple-scattering-affected lidar signals, as does the dual-FOV Raman lidar technique.

5.1.1 Multiple scattering in lidar measurements

The lidar equations and the retrievals introduced in Chapter 4 are based on the assumption

of single scattering, which means that no further scattering event occurs before or after the

backscattering of the detected photons. This assumption complies very well in scattering
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laser beam

FOV

Figure 5.1: Path of a photon which is emitted from the laser and detected from the lidar. Scat-

tering particles or molecules are shown as black dots. Left: multiple-scattering process consisting

of several scattering events. Through multiple scattering the emitted photon leaves the volume of

the laser beam. The photon is backscattered to the lidar from within the FOV and thus can be

detected. For a comparison the right panel shows the path of a photon returning to the lidar after

single scattering.

media that are optically thin and consist of scatterers that are smaller than or have a similar

size as the employed wavelengths, as it is the case for conventional aerosol measurements.

In lidar probings of water clouds, which are considered in the following, multiply scat-

tered light is detected. Fig. 5.1 illustrates a scattering process consisting of several scattering

events. Photons are forward scattered by cloud droplets, which are larger than the measure-

ment wavelength, with scattering angles close to 0◦ before or after a backscattering event.

Fig. 5.2 compares the phase functions, which denote the relative occurrence of scattering

angles for a scattering event, for scattering in clouds and molecular scattering. This figure

illustrates the pronounced forward scattering peak for cloud droplets, which is the reason for

the detection of multiply scattered light. Depending on cloud microphysical properties, up

to 50% of the scattered light is scattered with angles smaller than 1◦ in forward direction

[Wandinger , 1994].

The forward-scattered photons, which can be backscattered by subsequent scattering

events and detected with the lidar, lead to a signal increase compared to the case in which

these photons are extinguished. Thus, the obtained extinction coefficient is decreased, if sin-

gle scattering is assumed. This effect may lead to errors of the retrieved extinction coefficient

of up to 50% [Wandinger , 1998].
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Figure 5.2: Phase function for scattering by cloud droplets with effective radii of 6 and 18µm and

molecular scattering at 532 nm. Scattering by droplets leads to a pronounced forward scattering

peak.

Multiple-scattering processes may consist of solely elastic scattering events but may also

contain a Raman scattering process. In the latter case, the photon is Raman backscattered by

a molecule, e.g., nitrogen. The alternative multiple-scattering process, in which the Raman

scattering process occurs in forward direction and the backscattering is elastic, has a much

lower probability of about three orders of magnitude [Deirmendjian, 1969; Wandinger , 1994;

Malinka and Zege, 2003]. This behavior is due to the strong forward scattering peak of cloud

droplets whereas the molecular scattering is almost isotropic (see Fig. 5.2).

5.1.2 Multiple scattering lidar measurements for the retrieval of cloud proper-
ties

Despite the problems caused by multiple scattering in lidar measurements, the multiple-

scattering effect may be used to derive additional information about the probed cloud. In

the following subsections, three approaches used to derive cloud properties from multiple-

scattering influenced lidar measurements are introduced.

Wide-angle FOV lidar

Wide-angle FOV lidars, also termed wide-angle imaging lidars or off-beam lidars, were in-

troduced by Love et al. [2001] as well as Cahalan et al. [2005], who developed lidar systems

working with extremely large FOVs of up to 60 ◦and 5.7 ◦, respectively. These angles are to

be understood as a full angles as well as the following angles in this work regarding FOV,
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laser beam divergence, or similar, unless stated otherwise. Due to the large FOV, the lidar

signal can be recorded from large penetration depths up to 3 km. Both airborne [Cahalan

et al., 2005] as well as ground-based instruments [Love et al., 2001] have been developed.

The approaches derive the angular distribution of the detected light from measurements

with eight FOVs [Cahalan et al., 2005] or time-resolved recordings of images of the full, wide

FOV [Love et al., 2001], which corresponds theoretically to an infinite number of FOVs. This

information is utilized to determine the cloud geometrical and optical thickness as well as in

the case of Cahalan et al. [2005] the profile of the cloud extinction coefficient.

The introduced approaches constitute valuable techniques for the investigation of cloud

properties. Especially the large penetration depths, which are untypical for lidar techniques,

are an important feature. However, the assumption of horizontal homogeneity [Love et al.,

2001; Cahalan et al., 2005] is a constraint. Vertical inhomogeneities cause problems for the

retrieval of Love et al. [2001]. The approach of Cahalan et al. [2005] has problems in dealing

with clouds whose vertical variability deviates from idealized models of vertical variability

of cloud properties. Furthermore, these measurements are restricted to night time, because

the large FOVs lead to a strong background signal under daylight conditions. Still, the most

important drawback of the wide-angle FOV lidar approaches is that these techniques are

not capable of measuring cloud droplet size, LWC, and CDNC, which are all very important

quantities for investigations of aerosol-cloud interactions.

Small-angle multiple-FOV lidar

The determination of cloud droplet size from multiple-FOV measurements becomes possible

through the restriction of the measurement to small FOVs and thus small scattering angles

in the forward direction [Bissonnette, 1996]. Hence, the small-angle approximation can be

used for the treatment of the forward scattering in the corresponding retrieval algorithms.

This approximation simplifies the analysis which can be seen in Fig. 5.2. There is a bijective

correlation betweeen the width of the forward scattering peak of the phase function and

droplet size for small forward scattering angles. Smaller droplets cause larger scattering

angles. However, the limitation to smaller FOVs restricts the retrievals to smaller penetration

depths compared to the approaches introduced in the previous subsection. On the other

hand, the smaller FOVs assure the capabiliy of performing daylight measurements because

the daylight signal background is much weaker than for the approaches explained in the

previous section.

Bissonnette and Hutt [1995] used a lidar measuring elastically backscattered light with

four FOVs to derive profiles of the extinction coefficient and droplet effective radius in water

clouds. The size of the FOVs ranged from 4 to 40 mrad, which restricts the retrieval of the

cloud properties to the lower part of the cloud up to an optical thickness of 4 to 4.5. Other

multiple-FOV lidar setups are known, performing measurements with up to 32 FOVs with a

maximum size of 12 mrad [Bissonnette et al., 2002, 2005]. Veselovskii et al. [2006] suggested

to use six FOVs for an optimum measurement setup to retrieve cloud droplet size.
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For all the approaches mentioned in this and the previous subsection the number of mea-

sured signals (i.e., the number of employed FOVs) outnumber the two derived quatitities,

which are the extinction coefficient and cloud droplet size. This high demand of required

information is due to the complicated and irregular behavior of the phase function for the

backscattering event at cloud droplets. Thus, the angular distribution of the backscattered

light does not exclusively depend on the forward scatterering events, having a straighforward

relationship between the scattering angle and cloud droplet size, but also on the complicated

backscattering. The necessity of a high number of employed FOVs constitutes a drawback

as it makes the retrieval algorithm and measurement setup more complicated and thus sus-

ceptible for errors.

Polarization lidar

Multiple scattering does not only alter the angular distribution of the detected light but

also its state of polarization [Pal and Carswell , 1973, 1976; Sassen and Petrilla, 1986].

Hence, measurements of the polarization of the detected light can be used to derive cloud

microphysical properties.

Hu et al. [2006] derived an empirical relationship between the accumulated depolariza-

tion ratio and the accumulated single-scattering fraction. Roy and Cao [2010] used this

relationship for an inversion technique which is capable of retrieving the extinction coef-

ficient within clouds from lidar measurements. Similar to the approach introduced in the

previous subsection, the retrieval is limited to low optical depths, in this case optical depths

less than 2.

An interesting combination of the small-angle multiple-FOV and the polarization lidar

approaches was introduced by Roy et al. [1999]. The authors measured the polarization of

the light detected in all of the 32 FOVs of the lidar that was used by Bissonnette et al. [2002]

and Bissonnette et al. [2005]. In this way, the particle size distribution is obtained. However,

the retrieval algorithm considers only scattering processes with one forward scattering event

in order to keep it relatively straightforward. Hence, the analysis is limited to optical depths

of 0.3 to 0.4, corresponding to a penetration depth of about 10 m only, which is a severe

constraint for investigations of aerosol-cloud interactions.

5.2 Dual-field-of-view Raman lidar technique

In this section the dual-FOV Raman lidar technique is introduced. This technique was im-

plemented in the Raman lidar MARTHA in the scope of this work. The technique was

employed to retrieve cloud microphysical properties from lidar measurements. The measure-

ment principle as well as the technical details of the measurement setup are explained. The

section closes with the presentation of quality checks of the measurement setup.
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5.2.1 Measurement principle

Three approaches to derive cloud properties with lidar measurements were presented in

Subsection 5.1.2. The dual-FOV Raman lidar technique, which is the subject of this work,

resembles the method of Bissonnette and Hutt [1995], described in Subsection 5.1.2. It also

derives profiles of the extinction coefficient and droplet effective radius in water clouds from

measurements of the angular dependence of the backscattered light within the small-angle

approximation, i.e., for comparatively small FOVs. Similar to the work of Bissonnette and

Hutt [1995], the work makes use of the bijective dependence of the width of the forward

scattering peak, which is measured through the angular distribution of the received light, on

the size of the scattering object, i.e., the cloud droplet, as illustrated in Fig. 5.2.

The major difference of the dual-FOV Raman lidar technique to the approach followed

by Bissonnette and Hutt [1995] is the detection of light that is Raman scattered by nitrogen

molecules. As the Raman scattering event occurs at the backscattering (cf. Subsection 5.1.1)

and the scattering phase function for molecular scattering is almost isotropic (cf. Fig. 5.2),

the detection of Raman-scattered light avoids an effect of the backscattering event on the an-

gular distribution of the received light. Thus, the complex behavior of the phase function for

the backscattering at cloud droplets (cf. Fig. 5.2), which hampers approaches detecting elas-

tically scattered light, does not impair the dual-FOV Raman lidar retrieval. This advantage

simplifies the retrieval algorithm significantly, allowing the reduction of the measurement

setup to a straightforward and robust lidar working with only two FOVs of different size

[Malinka and Zege, 2007]. However, the utilization of Raman scattering involves small scat-

tering cross sections. The resulting comparatively weak signals restrict dual-FOV Raman

lidar measurements to night time because in the larger FOV, where the background lighting

is stronger, the signal cannot be separated from the daylight background.

5.2.2 Measurement setup

Hardware and measurement geometry

The measurement geometry of dual-FOV Raman lidar measurements is presented in Fig. 5.3.

Light is detected with an inner, narrow FOV and an outer, wide FOV. In contrast to the inner

FOV, the outer FOV is not a full cone but has an annular cross section. Furthermore, Fig. 5.3

shows two scattering processes, illustrating that smaller cloud droplets and the corresponding

larger scattering angles in forward direction lead to a larger signal in the outer FOV.

Simultaneous measurements with two FOVs are rendered possible through the utilization

of a mirror field stop, which is presented in Fig. 5.4. It consists of a dielectric mirror, which

is high-reflective for wavelengths of 532 and 607 nm, with an elliptical bore and an elliptical

obstruction. The mirror diaphragm is placed under an angle of 45◦ in the optical path.

The projections under this angle of the bore and the obstruction are circular. As the light

from the narrow, inner FOV is transmitted through the bore, the bore defines the inner

FOV. Light from the annular, wide, outer FOV is reflected by the mirror. Thus, the size of
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outer FOV

inner FOV

Figure 5.3: Dual-FOV measurement geometry. The inner, narrow FOV is shown in orange, the

annular, outer FOV is displayed in yellow. Scattering particles or molecules are shown as black,

green, and blue dots. Two multiple-scattering processes are illustrated: One photon is scattered

with smaller forward scattering angles and detected from the inner FOV, which is typical for larger

cloud droplets (blue). Another scattering process shows larger forward scattering angles, which

leads to a detection in the outer FOV (green).

the obstruction defines the outer FOV. Both ellipses are centered at the optical axis of the

receiver. Hence, the narrow and wide FOV are aligned to the same axis.

Figure 5.4 shows the complete beam separation unit of the Raman lidar MARTHA. In

addition to Fig. 3.3 the beam paths of the channels detecting light from the outer FOV

are shown as well. There, the light is collimated with a system of achromatic lenses with

a free aperture of 74 mm. A dichroic beamsplitter separates the light into the detection

channels for light of the wavelengths of 532 and 607 nm, detecting elastically scattered light

and light that was Raman scattered by nitrogen molecules, respectively. The corresponding

interference filters have FWHMs of 5.0 and 3.0 nm, respectively. A system of an objective

and eyepiece is employed, similarly as in the detection channels for the inner FOV. The

signals are detected with PMTs of the type R7400-U20 from Hamamatsu Photonics K.K.,

Hamamatsu City, Japan, which are employed in photomultiplier modules from Licel GmbH,

Berlin, Germany.

Optimization of the measurement geometry

Malinka and Zege [2007] showed that the sensitivity of dual-FOV Raman lidar measurements

to cloud microphysical properties depends strongly on the measurement geometry. Hence,
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Figure 5.4: Beam separation unit of MARTHA. Light from the inner FOV (indicated with a blue

arrow) is detected with the channels displayed in gray color, which correspond to the depiction

of Fig. 3.3. Light from the outer FOV (indicated with a green arrow) is reflected towards the

corresponding detection channels “532 nm (out)” and “607 nm (out)”, which are highlighted with

yellowish color and labeled according to the detected wavelength. Top left: illustration of the

mirror diaphragm. Incoming light from the wide, annular FOV is reflected (green rays), incoming

light from the narrow FOV is transmitted (blue rays). Light from outside both FOVs is blocked

by the elliptical obstruction of the mirror diaphragm (red rays).
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Table 5.1: Inner and outer FOVs, conjugate diameters for mirror diaphragms which can be

employed in MARTHA, and cloud base heights for dual-FOV measurements with MARTHA,

considering and not considering a tilt of the laser beam. For dual-FOV measurements the mirror

diaphragm is chosen according to the altitude ranges considering a tilt of the laser beam.

Conjugate Conjugate Cloud Base Height

Inner Diameter Outer Diameter Laser Laser

FOV Of Bore FOV Of Obstruction Not Tilted Tilted

0.28 mrad 2.5 mm 0.78 mrad 7.0 mm 3.0–6.0 km 4.0–6.0 km

0.50 mrad 4.5 mm 2.00 mrad 18.0 mm 1.5–3.0 km 2.0–4.0 km

0.78 mrad 7.0 mm 3.80 mrad 36.0 mm 0.9–1.5 km 1.3–2.0 km

the authors gave recommendations for the sizes of the employed FOVs to optimize dual-FOV

cloud probings. The optimum for the inner FOV γin is

γ1 < γin < γ2, (5.1)

with

γ1 = max

{
γs,

Dr

zp +H
,

Ds

zp +H

}
, (5.2)

γ2 = γs +
Dr

zp +H
+

Ds

zp +H
, (5.3)

with the laser beam divergence γs = 0.2 mrad, the aperture of the receiving telescope

Dr = 0.8 m, the laser beam diameter Ds = 0.15 m, the penetration depth into the cloud zp,

and the cloud base height H. The recommendation for the size of the outer FOV γout is

γout = 0.01
zp

H
. (5.4)

The recommended size for the inner as well as for the outer FOV depends on the cloud

base height. The receiving unit of MARTHA is set up in a way that it is possible to

choose between three differently sized mirror diaphragms to enable cloud measurements

with a high sensitivity to cloud properties in an extended altitude range from 1.3 to 6.0 km.

The dimensions of the three different mirror diaphragms that can be employed and the

corresponding pairs of FOV are listed in Table 5.1. Table 5.1 also shows altitude ranges

for dual-FOV cloud measurements which comply with Eq. (5.1) and (5.4) and a penetration

depth of zp = 200 m.

In the derivation of Eq. (5.1) and (5.4), a tilt of the laser beam against the optical axis

of the telescope is not considered. However, due to the limited accuracy of the laser beam

alignment, there is always a small tilt of the laser beam (cf. Subsection 5.2.3 and Section 5.3).

The effect of a tilt of the laser beam on the overlap function is illustrated in Fig. 5.5. This

figure shows overlap functions for the FOVs of 0.5 and 0.78 mrad with a non-tilted as well a

tilted laser beam. The overlap functions were obtained with ray-tracing simulations with the
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Figure 5.5: Overlap functions for MARTHA from ray-tracing simulations with and without a

tilt of the laser beam of 0.115 and 0.205 mrad for a FOV of 0.5 and 0.78 mrad, respectively.

Software ZEMAXTM as described by Reichardt et al. [Reichardt et al., 2012]. The choice

of the parameters used for the simulation is explained in Subsection 5.2.3 and Section 5.3.

These parameters are listed in Table 5.2. The tilt of the laser beam for the FOVs of 0.5 and

0.78 mrad were 0.115 and 0.205 mrad, respectively (cf. Subsection 5.2.3 and Section 5.3).

A tilt of the laser beam leads to a weaker increase of the overlap function with height

and thus shifts the optimum altitudes for cloud measurements upwards (cf. Table 5.1). At

the altitudes relevant for cloud measurements, there is a height shift of 0.5 to 1.0 km between

equivalent values of the overlap functions with and without the tilt of the laser beam. Thus,

the altitude ranges of the clouds for the selection of the corresponding mirror diaphragm

are corrected by these differences. In Table 5.1 the optimum cloud base heights for dual-

FOV measurements with the corresponding mirror diaphragms, considering a tilt of the laser

beam, are listed. These height requirements were applied for the performed dual-FOV cloud

measurements.

Data acquisition

The signals from the detection channels for the outer FOV are recorded with the Licel

transient recorder TR20-160. This data acquisition system is run synchronously with the

Purana or CNT80 system, respectively, with a temporal resolution of 4 s. To increase the

number of profiles which can be detected within each 4-s interval the maximum detection

height is decreased from the maximum possible 120 to 30 km because the corresponding lower

amount of data consumes less time for data storage and thus enables longer measurement

times within each 4-s interval. Still, the 30 km signal range is far enough to do an accurate

background correction of the measured signals. The raw spatial resolution is 7.5 m.

As the data acquisition systems for the signals from the inner and outer FOVs are trig-

gered independently, the corresponding signals have to be corrected for a possible height
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shift. This shift was determined from cloud measurements by comparing the measured cloud

base height. The 0-m height of the Purana system was found to correspond to the height of

22.5 m in the Licel system. The 0-m height in the CNT80 system, identified by the recording

of the emitted laser pulse through the pretrigger capability, corresponds to an altitude of

30 m in the Licel system.

Adaptation of signal intensity

To avoid effects of the PMT dead time on the measured signals, the intensity of the detected

light is decreased with neutral-density filters in each detection channel separately. The optical

density of the filters employed for the detection of light at 607 nm from the inner FOV is

varied depending on cloud base height and aerosol properties between 0.2 and 1.1. For the

detection of light at 607 nm from the outer FOV, filters with optical densities between 0

and 1.1 are used. With the appropriate setting of the neutral-density filters for each cloud

measurement a maximum penetration depth into the cloud is achieved.

5.2.3 Quality checks of dual-FOV Raman lidar setup

Comparison of overlap functions derived from measurement and simulation: Effect of

mirror diaphragm on overlap function

An exact knowledge of the overlap function is crucial for the retrieval algorithm described

below. Therefore, the effect of employing a mirror diaphragm instead of a conventional field

stop on the overlap function was investigated in detail. An ideal field stop has an infinite

small thickness and is placed orthogonally to the optical axis in the optical path. The mirror

diaphragm is 2 mm thick and is positioned under 45◦. Ray-tracing simulations with the

software ZEMAXTM were performed to compare the overlap functions of the Raman lidar

MARTHA employing the mirror diaphragm as well as an ideal field stop. Fig. 5.6 displays

the obtained results: the simulated overlap functions (blue and green lines) agree very well.

This finding demonstrates that the usage of a mirror diaphragm instead of an ideal field stop

does not affect the overlap function and thus the measured lidar signals. Furthermore, the

overlap function of the Raman lidar MARTHA was determined experimentally as decribed

by Wandinger and Ansmann [2002]. This overlap function matches the simulated functions

very well (see Fig. 5.6, red line), illustrating that the lidar system is well represented in the

ray-tracing simulations.

The parameters used for the simulation are listed in Table 5.2. The given radius of the

telescope’s secondary mirror describes an obstruction at the center of the primary mirror in

the ray-tracing simulations. The values for the FOV, radii of the telescope’s mirrors, and

radius of the laser beam were either measured directly or calculated from measurements. The

effective focal length of the telescope was given by the trader (Astro Optik Philipp Keller,

Neutraubling, Germany). To obtain a steeper increase of the overlap function, the field stop

of the Raman lidar MARTHA is not placed in the focal plane of the telscope but slightly

behind. Due to the large focal length of the receiving telescope, it is difficult to obtain an
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Figure 5.6: Overlap functions of MARTHA from ray-tracing simulations with ideal field stop

(blue) and mirror field stop (green) as well as from measurement (red) for an FOV of 0.5 mrad.

exact measure of the distance between the focal plane of the telescope and the field stop.

With the auto-collimation method, where a point light source is placed in the telescope’s

focal plane and a plane mirror behind the telescope reflects its light back into the focal plane

Wilson [2001], it was determined to 20± 10 mm. The value was varied within this range to

obtain the best fit of the overlap function obtained from the measurement and the ray-tracing

simulations. Neither the divergence of the laser beam nor the tilt of the laser beam against

the telscope’s optical axis were measured directly. A rough estimate of the divergence of

the laser beam of 0.1 mrad was made from the initial laser beam divergence obtained from

the manufacturer’s specification (1.5 mrad) divided by the beam’s expansion factor of 15.

Still, the divergence obtained in this way is influenced among other effects by diffraction at

optical elements of the transmitting unit, atmospheric turbulence, a non-perfect setup of the

beam expander, and thermal effects within the laser cavity. Thus, the laser beam divergence

was varied within the boundaries of 0.08 to 0.3 mrad to obtain the best match between the

measured and simulated overlap functions. The procedure to obtain the best-match value of

the tilt of the laser beam was similar. From pictures of the camera, which is used to align the

laser beam for the measurements, the range of possible tilts of the laser beam was estimated

to be between 0 and 0.15 mrad.
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Table 5.2: Parameters used for ray-tracing simulations of MARTHA’s overlap functions which

are shown in Fig. 5.6.

FOV 0.5 mrad

Radius of telescope’s primary mirror 0.4 m

Radius of telescope’s secondary mirror 0.11 m

Effective focal length of telescope 8974 mm

Radius of emitted laser beam 0.075 m

Distance of focal plane of telescope and field stop 15.4 mm

Divergence of laser beam 0.2 mrad

Tilt of laser beam 0.115 mrad

Angles of incidence in receiver: performance of dichroic beam splitters and interference

filters

For a proper performance of the interference filters and dichroic beam splitters in the receiver,

small deviations from the nominal angles of incidence of 0◦and 45◦, respectively, are required.

In general, the deviations from the nominal angles of incidence increase with increasing FOV.

In the dual-FOV technique large FOVs are employed, in particular for the outer FOVs.

Thus, a check of the angles of incidence on the optical elements in the beam separation

unit is necessary. The distribution of these angles was investigated with help of ray-tracing

simulations with ZEMAXTM. The lidar parameters for the simulations of the inner FOVs

were the same as used for the retrieval of the overlap functions, listed in Table 5.2. The

simulations for the outer FOVs were done with a virtual laser beam divergence of 2 and

4 mrad to account for the possible backscattering of photons from the entire volume of the

outer FOV due to multiple scattering in clouds. Fig. 5.7 shows the angular distribution for

inner FOVs of 0.5 and 0.78 mrad and outer FOVs of 2.0 and 3.8 mrad on the interference filters

of the detection channels for different backscattering heights. Rays from the outer FOVs show

much larger angular deviations from the optical axis than rays from the inner FOVs. Ray-

tracing simulations show that the acceptance angles of the employed interference filters are

of the order of 5◦[Schmidt , 2009] with dichroic beamsplitters accepting deviations from their

nominal angle of incidence of 45◦of similar magnitude. Since all angles of incidence are well

below this value, no effect of the limited angular acceptance of the dichroic beamsplitters

and interference filters on the measured signals is expected.

5.2.4 Dual-FOV Raman lidar cloud probings with MARTHA: Overview

In the scope of this work 29 dual-FOV Raman lidar measurements of water clouds were

performed with the described measurement setup. For the analyses of the measurements

the forward iterative algorithm, described in the following section, was employed. Thereby,

cloud properties could be derived up to a geometrical and optical penetration depths of 60

to 255 m and 1.2 to 4.1, respectively. The corresponding means are 140± 50 m and 2.8± 0.9.
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Figure 5.7: Distribution of angles of incidence on interference filters. Rays from the outer FOV

have larger angles of incidence than rays from the inner FOV.

5.3 Forward iterative algorithm

This section describes the algorithm which was used for the evaluation of the performed

dual-FOV Raman lidar measurements as well as its adaptation to the specific measurement

geometry of the Raman lidar MARTHA.

5.3.1 Basic information

Malinka and Zege [2007] developed a forward iterative algorithm for the analysis of dual-FOV

Raman lidar measurements. It uses Raman lidar signals from multiple scattering, measured

synchronously with two FOVs as described in Sections 3.1 and 5.2, to retrieve profiles of the

cloud droplet effective radius and extinction coefficient in water clouds. No assumptions on

cloud properties, as for example adiabaticity, are made for the retrieval.

The algorithm makes use of a solution for analytical modeling of Raman lidar signals in-

fluenced by multiple scattering based on a small-angle approximation, published by Malinka

and Zege [2003]. The scattering process of one or multiple elastic scattering events in for-

ward direction and an inelastic backscattering event, leading to signals at the Raman-shifted

wavelength, is considered.

In the algorithm the investigated cloud is assumed to consist of a number of homogeneous

cloud layers, each with its own characteristics regarding extinction and effective radius. For

each layer the extinction and effective radius are determined and thus profiles of the derived

quantities are obtained. The number of layers can be set manually to balance the demands

of a successful forward iteration and an adequate height resolution which is necessary to

resolve the cloud’s characteristics. Furthermore, the algorithm includes a function to set the

number of cloud layers automatically according to the strength of the measured lidar signals

in each height range. The altitude range for which the forward iterative algorithm is run is
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chosen manually. More details regarding the selection of the number of cloud layers and the

altitude range for the forward iteration are given in Section 5.7.

The algorithm runs iteratively. In the first run, the effective radii in all cloud layers

are set to 9µm. The extinction coefficient is set to the values calculated from the signal

measured in the inner FOV, applying the single-scattering approximation. From these cloud

properties the expected lidar signals of both FOVs are calculated analytically. The results

are compared with the measured signals. The assumed cloud microphysical properties are

adapted according to the comparison and used for the next iteration step by calculating the

resulting lidar signals again. The iteration is stopped when the calculated signals converge.

The difference d between the calculated and measured signal is calculated as

d =

√√√√ 1

n

n∑
k=0

(lnNmeas
k − lnN calc

k )2, (5.5)

with the count rates Nmeas
k and N calc

k of the measured and calculated signals in the k-th

cloud layer, respectively, and the number of cloud layers n used in the forward iteration. If

d < 10−3 for the signals in both FOVs, the forward iteration is considered to be successful.

The algorithm performs a maximum of 50 forward iterations. If the signal differences d

remain larger than 10−3 or if the calculated signals do not converge to a stable solution, the

forward iteration is declared as not successful and not used for further analysis.

5.3.2 Adaptation to measurement geometry

For analyzing dual-FOV measurements performed with the Raman lidar MARTHA, the

forward iterative algorithm was adopted to the measurement geometry of the lidar, which is

represented by the overlap function. A correct representation of the lidar parameters (e.g.,

tilt of laser beam, laser beam divergence, position of field stop) in the forward iterative

algorithm is necessary, because the resulting measurement geometry has a strong effect

on the dual-FOV lidar signals and thus the retrieved cloud microphysical properties. The

measurement geometry can be characterized by the overlap function of the lidar system.

Functions which are part of the source code of the forward iterative algorithm were

used to calculate the overlap function analytically [Malinka and Schmidt , 2010]. Fig. 5.8

shows a comparison of these overlap functions with the functions obtained experimentally

and from ray-tracing simulations. The parameters for the ray-tracing simulation for the

FOV of 0.5 mrad are identical to those given in Subsections 5.2.2 and 5.2.3 and are listed in

Table 5.2. The simulation for the FOV of 0.78 mrad uses the same parameters except for a

larger uncertainty in the tilt of the laser beam. For a larger FOV the image of the footprint

of the FOV is larger which makes it more difficult to adjust the displayed laser beam to the

center of the image causing a larger tilt of the laser beam. To find the best match between

the measured and simulated overlap functions, the tilt was varied between 0 and 0.23 mrad,

giving the best match at a tilt of 0.205 mrad.

The parameters used for the analytical calculation, which produced the best match with

the overlap functions derived experimentally and from ray-tracing simulations, are utilized
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Figure 5.8: Overlap functions derived experimentally, analytically, and from ray-tracing simula-

tions for inner FOVs of 0.5 and 0.78 mrad.

Table 5.3: Parameters for ray-tracing simulation and analytical calculation of the overlap func-

tion. The parameters from the analytical calculation are used for the forward iterative algorithm

to represent the measurement geometry of the Raman lidar MARTHA.

Ray-tracing Simulation Analytical Calculation

FOV 0.5 mrad 0.78 mrad 0.5 mrad 0.78 mrad

Divergence of laser beam 0.2 mrad 0.21 mrad

Tilt of laser beam 0.115 mrad 0.205 mrad 0.1 mrad 0.19 mrad

to represent the measurement geometry in the forward iterative algorithm. The radii of

the telescope’s mirrors and the laser beam, the effective focal length of the telescope, as

well as the distance between the focal plane of the telescope and the mirror diaphragm

are set as listed in Table 5.2. In the ray-tracing simulation and the analytical calculation

the edge of the laser beam (cut-off intensity) is treated differently. Thus the the tilt and

divergence of the laser beam were slightly varied for the analytical calculation in the intervals

of ±0.03 mrad from the corresponding values used for the ray-tracing simulation. Table 5.3

shows the tilt and divergence for the analytical calculation and ray-tracing simulation that

yield the best match of the overlap functions. The small deviations between the analytically

calculated overlap functions and the functions obtained from measurements and ray-tracing

simulations (cf. Fig. 5.8) confirm that the dual-FOV Raman lidar measurement geometry

of MARTHA is well represented in the forward iterative algorithm, which is mandatory for

high-quality cloud analyses.
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5.4 Retrieval of liquid-water content

The forward iterative algorithm retrieves profiles of the effective droplet radius re and the

extinction coefficient α of clouds. These two quantities together with the water density

ρ = 1 g/cm3 can be used to calculate profiles of the LWC wc, which is another important

cloud microphysical property:

wc(z) =
2

3
ρre(z)α. (5.6)

This equation is derived from the expression for the extinction coefficient α of a cloud,

α =

∫ ∞
0

n(r)Qext(x,m)πr2dr, (5.7)

with the droplet size distribution n(r), droplet radius r, and the extinction efficiency Qext

being dependent on the size parameter x = 2πr
λ with the laser wavelength λ and the refractive

index m. As the investigated cloud droplets are much larger than the laser wavelength, the

approximation Qext ≈ 2 can be applied. Substituting∫ ∞
0

n(r)r2dr =

∫ ∞
0

n(r)r3dr
1

re
(5.8)

and

wc =
4π

3
ρ

∫ ∞
0

n(r)r3dr (5.9)

leads to Eq. (5.6).

5.5 Retrieval of cloud droplet number concentration

As explained in Subsection 2.2.3, the CDNC is an important cloud microphysical quan-

tity because it is a convenient proxy for cloud properties in investigations of aerosol-cloud

relationships. The CDNC N can be derived from

N =
α

2πr2
s

, (5.10)

with the surface mean droplet radius rs = (r2)1/2. However, the surface mean droplet radius

cannot be assessed with dual-FOV Raman lidar measurements directly and thus has to be

derived from the effective radius. The relationship between these two quantities depends on

the cloud droplet size distribution. Gamma distributions adequately model many droplet

size distributions obtained from in-situ measurements [Miles et al., 2000], and their usage

in cloud models is common [Cohard and Pinty , 2000; Khairoutdinov and Kogan, 2000; Liu

and Daum, 2004]. Furthermore, gamma distributions are frequently employed in radiative-

transfer studies of scattering media [Deirmendjian, 1969]. The modified gamma distribution

is defined as

n(r) =
N

Γ(p)
rp−1bpexp(−br), (5.11)
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with the parameters b, p > 0. For droplet size distributions that comply with a gamma

distribution the surface mean radius is related to the effective radius by

r2
s =

p(p+ 1)

(p+ 2)2
r2

e = lr2
e , (5.12)

with the factor l = p(p+1)
(p+2)2

. Thus, the CDNC of a cloud with a droplet size distribution that

meets a gamma distribution can be calculated to

N =
α

2πlr2
e

(5.13)

as a combination of Eq. (5.10) and (5.12).

Miles et al. [2000] set up a database from various in-situ measurements of droplet size

distributions of low-level stratus clouds. The fit of a modified gamma distribution to the size

distributions obtained from measurements in continental air masses yielded p = 8.7 ± 6.3

and thus l = 0.74± 0.20.

The work of Martin et al. [1994] permits an alternative approach. A linear relationship

between the volume mean radius rv = (r3)1/3 to the power of three and the effective radius

to the power of three,

r3
v = kr3

e , (5.14)

was established from a number of in-situ measurements of warm stratocumulus clouds (i.e.,

clouds above 0◦C) with negligible entrainment effects. For continental air masses it was found

that k = 0.67±0.07. Lu and Seinfeld [2006] compiled a list of k values from stratiform clouds.

The values for continental air masses range from 0.67 to 0.9. With the relationship

N =
3wc

4πρr3
v

(5.15)

and Eq. (5.6) and (5.14) the CDNC can be calculated to

N =
α

2πkr2
e

, (5.16)

which has the identical structure as Eq. (5.13). The k values are slightly larger than the l

values and have a larger uncertainty. Still, the two approaches can be considered as con-

sistent. As the dataset of Miles et al. [2000] is larger than the dataset of Lu and Seinfeld

[2006], Eq. (5.13) was used to derive CDNC profiles in this work.

5.6 Retrieval of cloud base height

When using lidar, typically the profile of the backscatter coefficient is utilized for the de-

termination of the cloud base height. However, the backscatter coefficient increases already

below the cloud due to the growth of aerosol particles in the humid environment, which

complicates the corresponding retrievals. Dual-FOV lidar measurements provide another

approach to retrieve cloud base height because multiple scattering by cloud droplets leads
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Figure 5.9: Simulated Raman signals from the outer FOV of (a), (b) 2.0 and (c), (d) 3.8 mrad

for clouds with droplet effective radii of 8 and 3µm and extinction coefficients of 5 and 20 km−1 in

green and blue, respectively. The cloud base is indicated by an orange line. All simulations show

a signal increase at cloud base. For some simulations the aerosol particles below cloud base cause

a signal increase. However, this signal increase is much weaker than the increase at cloud base.

to an increase of the Raman signal from the outer FOV. Still, the signal depends on the

measurement geometry as well, particularly the FOV and cloud base height.

The behavior of the Raman signal from the outer FOV was investigated with simula-

tions based on the work of Malinka and Zege [2003]. Fig. 5.9 presents the results of this

investigation. Simulated Raman signals are shown from the outer FOV of 2.0 and 3.8 mrad

for several cloud base heights in the corresponding altitude range suitable for cloud mea-

surements [Schmidt et al., 2013]. For the simulation cloud droplet effective radii of 8 and

3µm and cloud extinction coefficients of 5 and 20 km−1, were assumed, which correspond to

the range of microphysical cloud properties derived at the cloud bases in the measurements

analyzed in the present work.

In the simulations the growth of aerosol particles due to an increased humidity was

considered. The resulting increase of the scattering cross section was calculated as described

in Hänel [1976] and Randriamiarisoa et al. [2006]. The gamma parameter, describing the

magnitude of this increase, was set to 0.5, which is a common value [Gasso et al., 2000;

Randriamiarisoa et al., 2006; Skupin, 2013]. An increase of the relative humidity from 65%

at 1 km below cloud base to 98% at 15 m below cloud base was considered.

In all of the simulations shown in Fig. 5.9 the Raman signal from the outer FOV increases

at cloud base. The slope of the increase differs strongly with the measurement geometry and

cloud properties. Furthermore, the aerosol growth below cloud base leads to a signal increase

for some measurement geometries. However, in all presented cases the cloud base height can

be identified from the strong increase of the derivative of the Raman signal from the outer

FOV exactly at cloud base. Thus, for all relevant altitudes of dual-FOV measurements the

cloud base height can be retrieved with the accuracy of the measurement’s height resolution

(15 m for MARTHA), which is another unique feature of the dual-FOV lidar.
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5.7 Scheme for analysis of dual-FOV measurements

This section describes the pre- and post-processing of the data for the forward iterative

algorithm as well as the settings for running the cloud forward iterations. Before May 2012

the signals of the inner and outer FOV were recorded with different height resolutions due to

the usage of different data acquisition systems (cf. Subsection 5.2.2). Thus, the signal from

the outer FOV, recorded with the Licel transient recorder at a height resolution of 7.5 m,

was averaged to a height resolution of 15 m which corresponds to the height resolution of the

Purana system. With the installation of the CNT80 data acquisition system instead of the

Purana system, the detection channels of the inner as well as of the outer FOV worked with

the same height resolution of 7.5 m, which is used in the data analysis.

The cloud base height often varies within a time span of several seconds to minutes by 10

to 100 m. Averaging profiles with different cloud base heights would result in inaccurately

retrieved cloud microphysical properties, especially at the cloud base where cloud-free and

cloud-containing signals would be averaged. Therefore, for each of the 4-s profiles the height

of the cloud base is determined from the derivative of the signal from the outer FOV at

607 nm (cf. Section 5.6). For the averaging only profiles are considered for which the cloud

base does not differ by more than 30 m.

For the analysis of a cloud measurement the cloud forward iterations are performed with

height resolutions of four, five, six, and seven layers as well as an automatically determined

height resolution. Forward iterations with more than seven height layers often show oszilla-

tions in the retrieved results, indicating that the obtained solutions are not stable.

In the following, the choice of the lower and upper height limit for the execution of the

forward iterative algorithm is explained. The lower height limit is set to the cloud base

height, which is retrieved with the Raman signal measured in the outer FOV, as described

in Section 5.6. To account for uncertainties in the retrieved cloud base height, due to its

temporal variations, the lower height limit is varied by 30 m in steps of 15 m. In case of

complete penetration of the cloud, the upper height limit is set to the cloud top height,

which is derived from the elastic-backscatter signal of the inner FOV. However, due to the

weak signals in that altitude the accuracy is limited. Furthermore, the variations of the

cloud top height even exceed the variability at cloud base. In the much more common case

of complete attenuation of at least one of the two Raman signals measured in the inner and

outer FOV, the upper height limit of the forward iteration is set to the altitude where the first

Raman signal is completely attenuated. However, the measured lidar signals close to that

height limit are usually very weak and thus the forward iteration might not run successfully.

Hence, in both cases, the penetration of the cloud or the complete attenuation of at least

one Raman signal, the derived upper height limit for the forward iteration has to be varied.

This is done by 45 to 90 m towards lower altitudes in steps of 15 m. Hence, for each height

resolution the algorithm is executed with a variety of lower and upper height limits.

The measurement error of the lidar signals used for the forward iteration is considered

by input variation, using Monte Carlo simulations. Thus, for a forward iteration run the

algorithm is executed 14 times with count rates c being varied within the range [c−
√
c, c+

√
c]
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for each height bin, according to the standard deviation of a Poisson distribution. These

variations are done with the height resolution of the signals used in the forward iteration,

i.e., 15 and 7.5 m before and after May 2012, respectively (cf. Subsection 3.1). The results

of the corresponding forward iterations are used to compute for each cloud layer the mean

value and its error from the standard deviation, yielding profiles of the effective radius, the

extinction coefficient, and the corresponding error margins.

According to the five different height resolutions (number of layers) used for the forward

iteration runs as well as the three and four to seven different altitudes for the lower and

upper height limits, respectively, a total of 60 to 105 forward iterative runs are performed for

the analysis of a cloud measurement. The obtained profiles of cloud microphysical properties

are checked for their quality. Profiles with a data point having a relative error of more than

60% are excluded as well profiles for which the average error of two consecutive data points

exceeds 45% and profiles for which the average relative error of all data points exceeds

30%. Furthermore, profiles that are physically unrealistic are discarded. Thus, profiles

with effective radii greater than 30µm are rejected as well as profiles that show oscillations.

Moreover, profiles that show a strong difference between two consecutive data points are

excluded. These profiles are defined as profiles with a data point that has a relative difference

to its neighboring points of larger than 500%. On average, 30% to 85% of the forward iterative

results are accepted. These profiles are averaged to a common height resolution which

corresponds to the lowest height resolution leading to successful cloud forward iterations.

The resulting profiles are averaged with a weight according to the calculated statistical error

from the input variation. The standard deviation of these data points in each height bin is

considered as the error of the corresponding mean.
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Chapter 6

Measurement example, error analysis,

and evaluation

An example of a dual-FOV Raman lidar measurement is introduced in this chapter. The

measurement as well as the retrieved cloud properties are presented in the first section. An

MWR was employed to verify the measured LWP which is shown in this section as well.

In Section 6.2 extensive error analyses of the retrieved results and the methods employed

in the retrieval are performed. The chapter closes with Section 6.3, where the dual-FOV

Raman lidar technique is evaluated regarding its capabilities for investigations of aerosol-

cloud interactions. These discussions are based on the explanations given in Section 2.2.

Parts of this chapter have been published in Schmidt et al. [2014] and Schmidt et al. [2013]

and are adopted without explicit citing.

6.1 Measurement of an altocumulus cloud

6.1.1 Overview

Fig. 6.1 shows the time-height cross section of the range-corrected lidar signal at 532 nm from

the inner FOV, obtained during a dual-FOV Raman lidar measurement on 5 September 2011.

Aerosol layers are indicated by yellowish colors. The measured cloud is shown in red colors.

For the cloud retrieval 132 profiles were summarized excluding profiles where cloud gaps

or variations of the cloud base of more than 30 m occurred, as explained in Section 5.7. The

Raman signals at 607 nm measured in the inner and outer FOV are shown in Fig. 6.2. The

figure shows that the corresponding signals calculated with the forward iterative algorithm

compare well with the measured signals.

The Raman signal measured in the outer FOV indicates a cloud base height of 2.92 km,

which is highlighted in Fig. 6.2. This figure shows an increase of the signal at 532 nm from

the inner FOV already about 50 m below that altitude. This increase can be explained

with aerosol growth below the cloud due to the increased humidity, which is discussed in
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Figure 6.1: Time-height cross section of the range-corrected lidar signal at 532 nm, inner FOV.

The time period used for the cloud forward iteration is indicated by pink lines. Profiles with cloud

gaps, indicated by light blue colors above the cloud layer, were not used for the forward iteration.

The cloud top temperatures derived from the GDAS temperature profile for grid point Leipzig at

21:00 UTC on 5 September 2011, is inscribed in white color.
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Figure 6.2: Measured signals from the inner FOV at 532 and 607 nm and outer FOV at 607 nm.

In the plots for the inelastic signals the signals simulated from the forward iterative algorithm

are shown as blue circles. The cloud base height, derived from the signal at 607 nm from the

outer FOV, is shown as an orange line. The profile of the elastic signalis affected by dead-time

effects due to the high count rates inside the cloud. The Raman signals are not dead-time affected

because of a good neutral-density filter setting.
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detail in Subsection 6.1.4. The 532-nm signal from the inner FOV indicates the cloud top at

approximately 3.1 km.

The elastic backscatter lidar signal is influenced by detector saturation (dead-time effects)

[Donovan et al., 1993] because of the high count rates inside the cloud. Hence, Fig. 6.2 shows

a signal decrease at 532 nm inside the cloud. Because of a good setting of the neutral-density

filters, the Raman signals are not dead-time affected which is important for reliable results

from the forward iterative algorithm.

6.1.2 Cloud microphysical properties

Figure 6.3 presents the cloud microphysical properties obtained from the dual-FOV Raman

lidar measurement. As described in Section 5.3, the forward iterative algorithm considers the

cloud to consist of a number of homogeneous cloud layers, and the microphysical properties

obtained for the various layers yield the profiles of the obtained quantities. Hence, for a

correct representation of the retrieval results, the display of step functions for the retrieved

quantities would be appropriate. Nevertheless, to attain more clearly arranged plots, espe-

cially for comparisons of several cloud property profiles, the retrieval results of the various

layers are connected with straight lines in this figure and all following figured presenting

results from dual-FOV Raman lidar measurements.

On the left side of Fig. 6.3 the extinction coefficient of the cloud is displayed. The profile

retrieved with the forward iterative algorithm is compared with the extinction coefficient

obtained from the conventional Raman method not considering multiple scattering (cf. Sub-

section 4.2.3, Ansmann et al. [1990]). The extinction coefficient from the forward iterative

algorithm exceeds the extinction coefficient calculated with the Raman method as expected

because of the multiple-scattering effect. Light that is forward scattered under small angles

remains in the inner FOV and is backscattered to the lidar instead of getting lost.

The second plot from left shows the profile of the effective cloud droplet radius. Over

the largest part of the cloud the effective radius increases with penetration depth. This

can be explained with the further condensation of water vapor due to the cooling of the

ascending air parcel. The increase of the LWC, shown next to this plot, is caused by the

same process. The top of the uppermost cloud layer from the retrieval algorithm is at

3.075 km, which is almost the estimated cloud top height of 3.1 km. Hence, the decrease of

the effective droplet radius and LWC at larger penetration depths can be explained with

the downmixing of dry air from above the cloud leading to the evaporation of some liquid

water. The right panel shows the profile of the CDNC. Its error is calculated according to

Gaussian error propagation from the errors of the extinction coefficient and cloud droplet

radius (c.f. Eq. (5.13)), as done for the errors of the LWC. The two lowest data points have

large errors due to the corresponding errors of the extinction coefficient and effective radius.

The decrease of CDNC above penetration depths of 55 m can be explained with coagulation of

cloud droplets. At penetration depths between 30 and 140 m, which correspond to the inner

part of the cloud, the effective radius is between 4 and 16µm. The LWC has values between

0.02 and 0.35 g/m3, and the CDNC ranges between 30 and 210 cm−3 in this altitude. These
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Figure 6.3: Extinction coefficient, efective droplet radius, LWC, and CDNC of the cloud probed

on 5 September 2011, 19:44–19:49 UTC, retrieved with the forward iterative algorithm. The

retrieved cloud extinction coefficient (black) is compared with the extinction coefficient calculated

with the Raman method not considering multiple scattering (red line).

values fit to results from in-situ measurements compiled by Miles et al. [2000]. Furthermore,

Lu et al. [2007] derived from in-situ measurements of marine stratocumulus clouds droplet

effective radii of 5.6 to 9.3µm for clouds with LWPs from 15 to 45 g/m2, which corresponds

to the LWP of the observed cloud (cf. Subsection 6.1.3). The obtained CDNCs range from

43 to 290 cm−3. During the VOCALS-REx (VAMOS Ocean-Cloud-Atmosphere-Land Study

Regional Experimemt) field study over the southeastern Pacific west of South America in

October and November 2008, typical CDNC values in the strotocumulus-topped marine

boundary layer were mostly in the range from 50 to 350 cm−3 [Kleinman et al., 2012; Twohy

et al., 2013] and droplet effective radii were mostly 4 to 12µm [Twohy et al., 2005].

6.1.3 Verification: Comparison of LWP with MWR measurement

The MWR which is part of LACROS (cf. Section 3.3) was used for a verification of the forward

iterative results. The LWP measured with the MWR was compared with the LWP calculated

from the LWC obtained from the dual-FOV Raman lidar measurement. As mentioned in

Subsection 6.1.2 the top height of the uppermost cloud layer from the retrieval algorithm

and the cloud top height estimated from the 532-nm signal from the inner FOV are in good

agreement. This match ensure a reasonable comparison between the integral of the profile

information derived with the dual-FOV Raman lidar probing and the non-height-resolved

LWP measurement of the MWR.

Fig. 6.4 shows the LWP obtained from the MWR during the time period used for the

forward iteration as well as its average and the LWP from the dual-FOV measurement. The

average LWP measured with the MWR is 33.2± 3.1 g/m2. This value matches the LWP of

28.5±5.9 g/m2 from the dual-FOV measurement. A reason for the slightly smaller LWP from

the forward iteration might be that possibly the cloud was not completely penetrated with the
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Figure 6.4: LWP from MWR measurement and and its average (red) compared to the LWP

calculated from the LWC from the forward iteration (blue). The error bars of the average values

are indicated by the hatched areas.

dual-FOV measurement, at least not all the time. Furthermore, the measurement geometry

might cause deviations: an MWR probes a much larger volume than the comparably narrow

FOV of a lidar.

6.1.4 Aerosol particle growth and derivation of cloud base height

The increase of the backscatter coefficient due to the growth of aerosol particles in a hu-

mid environment was investigated in detail for this measurement. Fig. 6.5 shows the signal

measured in the outer FOV at 607 nm during the time span used for the cloud analysis for

the 500 m below the cloud. Furthermore, this figure presents the profile of the backscatter

coefficient obtained from the Raman lidar measurement (cf. Subsection 4.2.2, Ansmann et al.

[1992a]) in this time period.

The increase of the measured backscatter coefficient due to increasing humidity is com-

pared with the increase expected from theory, displayed in Fig. 6.5 as well. For the calculation

of the expected increase of the backscatter coefficient, the profile of the water-vapor mixing

ratio was derived from the Raman lidar measurement [Mattis et al., 2002] in the time period

used to derive the cloud properties and the aerosol particle backscatter coefficient. For the

calibration, the integrated water-vapor content, measured in the cloud-free period from 20:04

to 20:16 UTC with the MWR was used. From the resulting profile and the GDAS profile

of the temperature for grid point Leipzig at 21:00 UTC on 5 September 2011, the profile

of the relative humidity was calculated. At 2.4 km altitude a relative humidity of 77% was

derived. The retrieved profile of the backscatter coefficient increases monotonically from this

altitude onwards. Thus, the corresponding relative humidity was estimated for the respective

altitude with the assumption of a linear increase up to 100% at cloud base. The resulting

particle growth and increase of the backscatter coefficient were calculated according to Hänel
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Figure 6.5: Left: signal from outer FOV at 607 nm measured on 5 September 2011, 19:44–19:49

UTC. The cloud base height, which was determined from this measured signal, is highlighted in

orange. Right: measured and calculated profiles of the backscatter coefficient for the corresponding

time period. Both signals agree and illustrate the particle growth due to increasing humidity below

cloud base. The backscatter coefficient increases by a factor of about 16 from the altitude of 2.4 km

with a relative humidity of 77% to the height of 2.9 km with a relative humidity of 99%.

[1976] and Randriamiarisoa et al. [2006] with a gamma value of 0.58, which is in the range

of realistic values for aerosol particles over Leipzig [Skupin, 2013].

The measured and calculated profiles agree well, showing an increase of the backscatter

coefficient from 0.24 Mm−1 at 2.4 km altitude with a relative humidity of 77% by a factor of

16 to about 4 Mm−1 at 2.9 km altitude with a relative humidity of 99%. A significant increase

of the backscatter coefficient occurs already 100 m below cloud base. This increase illustrates

the uncertainty involved in the determination of the cloud base height from the profile of

the backscatter coefficient, which can be overcome by dual-FOV measurements because they

always provide robust information on the cloud base height. However, it has to be mentioned

that the time period for the cloud analysis has to be chosen such that fluctuations of the

cloud base height are minimized to obtain well utilizable dual-FOV signals.

6.2 Error analysis

This section deals with the accuracy and quality of the results retrieved from forward iter-

ations. In the first two subsections an error analysis is done on the base of the dual-FOV

Raman lidar measurement presented in the previous section. Thus, in Subsection 6.2.1 the

statistical error derived through the averaging of iteration results with differently set cloud

boundaries and height resolutions is compared to the error obtained from the variation of the

lidar signals as the input of the forward iteration. Subsection 6.2.2 investigates the influence

of the measurement geometry, set in the forward iterative algorithm, on the retrieved results.

In the following subsections error analyses are performed on a statistical basis. The minimal
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Figure 6.6: Left: relative errors of the forward iterative results presented in Fig. 6.3. Black

symbols denote statistical errors (stat.), red symbols show the averaged errors obtained from

input variations (i.v.). Squares indicate errors of the extinction coefficient α. The errors of the

effective radius re are displayed by triangles. Right: ratio of the statistical errors to the errors

from input variation of the extinction coefficient α (green) and effective radius re (blue). For

the lowest penetration depth the statistical errors dominate. For greater penetration depth both

errors have the same magnitude with the statistical error often being slightly larger.

duration of a dual-FOV cloud measurement which is necessary to obtain successful forward

iteration runs is determined from 49 forward iterations in Subsection 6.2.3. The mean errors

of the cloud microphysical properties derived from all dual-FOV Raman lidar measurements

analyzed in this work (29 measurements) are evaluated and compared in Subsection 6.2.4.

Subsection 6.2.5 has a closer look on the uncertainties of the CDNC.

6.2.1 Error from averaging over different forward iterative runs and input vari-
ation

As explained in Section 5.7, the stated errors of the retrieved mircophysical properties are

statistical errors, obtained from the standard deviations from the averaging of the forward

iteration results from differently set cloud boundaries and height resolutions in the forward

iterative algorithm. Here, these errors are compared to the errors obtained through input

variation of the utilized lidar signals of the inner and outer FOV. Figure 6.6 shows the

relative statistical errors of the forward iteration results presented in Fig. 6.3 as well as the

relative errors obtained from input variation averaged over all successful forward iterative

runs. The relative statistical errors are largest at the cloud base with values of 0.41 and

0.53 for the effective radius and the extinction coefficient, respectively. These uncertainties

are due to variations of the cloud base height. On the one hand, variations of the cloud

base height of up to 30 m occur in the profiles chosen for the cloud analysis. On the other

hand, consequently, the cloud base heights of the forward itertive runs are varied by 30 m

(cf. Section 5.7). Both effects contribute to the high errors directly at cloud base. At larger

penetration depths the corresponding relative errors are below 0.25.
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At the lowest penetration depth the statistical errors are about nine times larger than

the errors from input variation. The ratio of the relative statistical error to the relative

error from input variation is much lower for the other penetration depths, as illustrated in

Fig. 6.6. Still, for most penetration depths the statistical error is slightly larger than the

error from input variation. Thus, the statistical error is considered as a reasonable measure

for the uncertainty of the retrieved cloud microphysical properties.

6.2.2 Effects of uncertainties of measurement geometry on results of forward
iteration

In Section 5.3 it was demonstrated that the dual-FOV measurement geometry of MARTHA

is well represented in the forward iterative algorithm. In this section, the uncertainties of

the most crucial parameters controlling the measurement geometry are evaluated. These

parameters are the tilt and the divergence of the laser beam as they have the strongest

influence on the overlap function and are most difficult to determine. The parameters were

varied as listed in Table 6.1 in order to obtain two overlap functions with opposite deviations

from the overlap function that represents the measurement geometry best. The overlap

function for the employed measurement geometry and the two overlap functions for the

varied measurement geometries were calculated analytically as explained in Section 5.3 and

are shown in Fig. 6.7. The chosen parameters lead to deviations of the overlap functions

that are considerably larger than the deviations between the overlap functions in Fig. 5.8

which characterize the uncertainties of the employed measurement geometries. Hence, the

utilization of these parameters in the forward iterative algorithm provides an expedient

estimation of the maximum possible error due to uncertainties of the measurement geometry.

Table 6.1: Variations of tilt and divergence of laser beam for ray-tracing simulations for investi-

gation of sensitivity of the forward iterative algorithm towards the measurement geometry.

Setup Used for Variation Variation

Parameter Forward Iteration A B

Tilt 0.10 mrad 0.12 mrad 0.07 mrad

Divergence 0.21 mrad 0.26 mrad 0.18 mrad

The three measurement geometries were used in the forward iterative algorithm to analyse

the measurement presented in Section 6.1. The obtained cloud microphysical properties are

presented in Fig. 6.8, which shows that the deviations between the results from different

measurement geometries are smaller than the corresponding errors. The mean deviation

of the two forward iteration results with the varied measurement geometry to the results

obtained with the original measurement geometry was calculated and averaged over height.

Its value is compared with the height-averaged error of the corresponding cloud microphysical

property, derived as described in Section 5.7. For the extinction coefficient the ratio of the

derivation to the errors is 0.29. The corresponding values for the effective radius, LWC, and
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Figure 6.7: Overlap functions for a FOV of 0.5 mrad and for the measurement geometry usually

used in the forward iteration (blue) as well as slightly modified measurement geometries listed in

Table 6.1 (orange and green).

CDNC are 0.37, 0.32, and 0.31, respectively. This finding illustrates that the results of the

forward iterative algorithm are dominated by the cloud microphysical properties and the

measurement geometry causes only minor uncertainties of the results.

6.2.3 Required averaging time for forward iteration

Due to the signal noise several measured dual-FOV profiles have to be summed to obtain

profiles suitable for running the forward iterative algorithm. The usage of weak, noisy sig-

nals results in forward iterations that do not run successfully. In this section the neccessary

measurement time for dual-FOV cloud studies is examined. Different time periods for sum-

mation of measured dual-FOV profiles were utilzed to check for successful runs of the forward

iterative algorithm. To obtain representative results, this analysis was performed with four

different dual-FOV cloud measurements, which are listed in Table 6.2. Altogether 49 forward

iterations with summation time periods between 4 s and 22 min were run. The height resolu-

tion of the forward iterative algorithm was set automatically by the algorithm. Additionally,

the algorithm was run with height resolutions of four and seven layers as well.

The signal-to-noise ratio of the summed signal depends not only on the measurement

time but on the signal strength of the single profiles as well. To avoid an effect of a different

signal strength due to different cloud heights, cloud microphysical properties, and neutral-

density filter settings on the analysis, the study examines the success of the forward iterations

regarding the signal strength of the summed signal. The success of the forward iterations
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Figure 6.8: Cloud microphysical properties retrieved with the measurement geometry being

generally used for forward iterations (blue) as well as the varied measurement geometries listed in

Table 6.1 (orange and green).

Table 6.2: Measurements analyzed for study of necessary averaging time of dual-FOV measure-

ments.

Date Of Shortest Longest Number Of

Measurement Averaging Time Averaging Time Forward Iterations

09-08-2010 20 s 5 min 20

20-09-2010 10 s 7 min 7

15-08-2011 8 s 14 min 11

30-08-2011 4 s 5 min 11

is checked in dependence of the sum of the signals from the inner and outer FOVs because

the success of a forward iteration depends on the signal quality in the inner as well as in the

outer FOV. The sum of the signals is considered below the cloud. Thus, single-scattering

signals are evaluated. These signals are a measure for the signal strength inside the cloud

without being affected by the cloud properties. The signal strength at the cloud base is

considered as suitable for running the forward iterative algorithm, if more than 25% of the

forward iterations with the corresponding variations of cloud base and top height as well as

height resolution produce successful runs. For less than 5% successful forward iterations the

signal strength is considered as not suitable. Measurements which do not fall in either of

these categories are designated as ambiguous.

Fig. 6.9 displays the results of the study. All measurements with more than 1100 counts

below the cloud base were suitable for running the forward iterative algorithm. Below 80

counts no measurement could be used for a forward iteration. As a threshold for obtaining
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Figure 6.9: Suitability of dual-FOV measurements for forward iteration in dependence of signal

strength at the cloud base. The signal strength is represented by the sum of both FOV’s count

rates at the cloud base.

a suitable dual-FOV measurement 700 counts appears to be reasonable as the vast majority

of the measurements exceeding this value turned out to be suitable for running the forward

iteration. The performed dual-FOV measurements had a neutral-density filter setting which

induced count rates of about 1 Mc/s directly below the cloud base in the detection channel

for the outer as well as the inner FOV. With this signal strength a measurement time of about

two minutes is required to detect 700 counts at the cloud base in both FOVs. Assuming

that due to the variation of the cloud base height about every third measured profile has to

be rejected, the required measurement time for running the forward iterative algorithm is

about three minutes.

6.2.4 Uncertainties of retrieved cloud microphysical properties

In this subsection the quality of the retrieved cloud microphysical properties is evaluated

through the comparison of their uncertainties. For this objective the errors of cloud micro-

physical properties from 29 dual-FOV Raman lidar cloud measurements performed in the

scope of the present work were averaged and compared. To assess the height dependence of

the errors, the comparison was performed in three height layers for cloud penetration depths

of 0 to 30 m, 30 to 70 m, and 70 to 120 m. The height ranges were chosen such that solely the

lowest range covers the penetration depth where the derived cloud microphysical properties

may be influenced by possible variations of the cloud base height (cf. Section 5.7). The upper

height limit of 120 m was chosen because for 72% of the performed forward iterations pene-

tration depths larger than this value were achieved. Hence, this upper limit serves as a good

compromise between a high penetration depth and a comprehensive dataset. Furthermore,

the extent of each height range was increased by 10 m for each step. This choice partially

compensates for the decrease of the signal-to-noise ratio of the measured lidar signals with

increasing cloud penetration depth. The height ranges are identical to the height ranges used

in Chapter 8 for the statistical analysis of aerosol-cloud relationships. Hence, the retrieved

errors describe the uncertainties of the cloud properties utilized in that investigation. In
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addition to the height-resolved comparisons of the errors of the derived cloud properties, the

comparison was also performed for the mean values of the three height ranges.

Table 6.3 lists the corresponding results. In general, the relative errors are largest in the

lowest height range from 0 to 30 m, which can be explained with variations of the cloud base

height. Above the penetration depth of 30 m, the relative errors drop by 30% to 50%. The

cloud extinction and droplet effective radius, which are directly obtained from the forward

iterative algorithm, show the lowest uncertainties with cloud mean values of 22% and 23%,

respectively. The cloud properties that are calculated from these values have larger relative

errors, as their errors follow from Gaussian error propagation and thus the uncertainties of

both cloud extinction and droplet effective radius contribute to the resulting errors. The

uncertainty of the CDNC is particularly high with a height-averaged relative error which is

almost a factor of two higher than the corresponding LWC error. The largest part of this

error originates from the uncertainty of the cloud droplet effective radius because the square

of the radius occurs in Eq. (5.13) for the calculation of the CDNC. The contribution of the

error of the parameter l which is employed in the CDNC calculation according to Eq. (5.13)

is discussed in the following subsection.

Table 6.3: Mean relative errors of cloud extinction coefficient α, droplet effective radius re, LWC,

and CDNC for analyses of 29 dual-FOV Raman lidar cloud measurements.

Cloud Penetration Depth

Property 0–30 m 30–70 m 70–120 m Average

α 0.34 0.17 0.14 0.22

re 0.32 0.21 0.14 0.23

LWC 0.48 0.27 0.21 0.32

CDNC 0.82 0.58 0.43 0.61

6.2.5 Effect of unknown cloud droplet size distribution on CDNC error

The derivation of the CDNC from the measured profiles of the cloud droplet effective radius

and extinction coefficient is explained in Section 5.5. A parameter l, which depends on the

cloud droplet size distribution, has to be assumed to calculate the droplet surface mean

radius from the effective radius (cf. Eq. (5.12)). In this work a value of l = 0.74 ± 0.20 is

utilized, which was derived from an extensive dataset of in-situ measurements. The relative

error of 0.27 does not only result from measurement uncertainties but also from variations

of l itself due to different cloud droplet size distributions of different clouds. This subsection

deals with the effect of the lack of knowledge of the cloud droplet size distribution on the

overall uncertainty of the derived CDNCs.

Therefore, Table 6.4 compares the relative errors of the CDNC averaged from 29 dual-

FOV Raman lidar cloud measurements calculated with Gaussian error propagation from the

relative error of the cloud extinction coefficient and droplet effective radius and with as well
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as without the uncertainty of the l parameter. This comparison is done for three different

cloud penetration depths of 0 to 30 m, 30 to 70 m and 70 to 120 m as well as for the average

of these three height ranges, similar to the study in Subsection 6.2.4.

Table 6.4: Mean relative errors of CDNC for analyses of 29 dual-FOV Raman lidar cloud mea-

surements with and without consideration of the uncertainty of the l parameter, which describes

the uncertainty of the derived CDNCs resulting from variations of the cloud droplet size distribu-

tion.

Penetration Depth

0–30 m 30–70 m 70–120 m Average

∆l not considered 0.77 0.50 0.35 0.54

∆l considered 0.81 0.58 0.43 0.61

The differences of the relative CDNC errors with and without the consideration of the

uncertainty of the l parameter range from 5% to 19%. Hence, the l parameter constitutes only

a minor contribution to the overall error of the CDNC. The small effect of the uncertainty

of the l parameter on the CDNC error emphasizes the feasibility of the approach to derive

the CDNC from the measured cloud extinction and droplet effective radius according to

Eq. (5.13).

6.3 Evaluation of the dual-FOV Raman lidar technique

The investigation of aerosol-cloud interactions is a keystone of this thesis. Therefore, the

following subsections evaluate the applied dual-FOV Raman lidar technique with respect to

the suitability for investigations regarding aerosol-cloud relationships and compare it with

other ground-based remote-sensing techiques for cloud probings.

6.3.1 Feasibility for investigations of aerosol-cloud interactions

Choice of observables for investigation of aerosol-cloud relationships

In Subsection 2.2.3 possible observables which suit as proxies for aerosol and cloud properties

in the investigation of aerosol-cloud interactions were listed. Fig. 6.10 summarizes these

observables with a color code indicating their suitability for approaches with the dual-FOV

Raman lidar technique.

The capabilities of Raman lidar measurements to derive high-quality information about

aerosol properties were explained in detail in Section 4.2. The aerosol particle extinction

coefficient can be obtained without any a priori assumptions. In combination with the

Ångström exponent, which can be derived from Raman lidar measurements as well, the

aerosol index can be calculated. With the inversion technique described in Subsection 4.2.5

the APNC can be obtained from Raman lidar measurements. From these quantities, the
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Figure 6.10: Possible observables for the examination of aerosol-cloud interactions. Green col-

ors show observables which are easily accessible with dual-FOV Raman lidar measurements and

are used for investigations of aerosol-cloud interactions presented in the following chapters. Ob-

servables which can be obtained from dual-FOV Raman lidar measurements with a much higher

effort regarding data analysis are solely used in single case studies (APNC) or not used at all

(aerosol index) and are highlighted with yellow color. Quantities which cannot be measured with

a dual-FOV Raman lidar are shown in red color.

retrieval of the aerosol particle extinction coefficient is most simple. Therefore, the extinction

coefficient is used to describe the aerosol load in the majority of the case studies presented

in Chapter 7 as well as in the statistical approaches for the investigation of the aerosol-cloud

interactions related to the Twomey effect, which are depicted in Chapter 8.

In Chapter 5 and in this chapter it was explained that the dual-FOV Raman lidar tech-

nique is capable of deriving profiles of the effective cloud droplet radius and CDNC. In

contrast to the derivation of the effective droplet radius, which does not require any as-

sumptions regarding cloud properties, the calculation of the CDNC needs an assumption

of the relationship between the volume mean radius and the cloud droplet effective radius.

This assumption leads to some additional uncertainty of the retrieved results, although it is

based on a comprehensive statistics of in-situ cloud measurements (cf. Section 5.5). However,

these uncertainties are small compared to the uncertainties which originate from the forward

iterative algorithm which analyzes the dual-FOV Raman lidar measurements, as shown in

Subsection 6.2.5. Therefore, the CDNC is an important proxy describing cloud properties

in investigations of aerosol-cloud interactions. It has to be highlighted that the CDNC has

no direct microphysical link to the LWC, which revokes the need to group measurements

of aerosol and cloud properties according to LWC as necessary for analyses employing the

effective radius as a proxy for cloud properties (cf. Subsection 2.2.3).

Because only a fraction of the probed warm clouds could be penetrated with the dual-

FOV Raman lidar measurement, the cloud optical thickness can be derived only for those
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clouds. As this restriction would constrain the available dataset needlessly, the cloud optical

thickness is not used as a proxy for cloud properties in this thesis.

Suitability for objectives regarding investigations of aerosol-cloud interactions

In Subsection 2.2.2 the objectives of investigations related to aerosol-cloud interactions were

distinguished between studies dealing with the detailed understanding and quantification of

the microphysical processes involved in aerosol-cloud interactions (objective A) and studies

focussing on the Twomey effect itself and the related radiative forcing (objective B). Inves-

tigations concerning the microphysical processes are mainly limited by the spatial resolution

of the employed measurement technique. A horizontal resolution of at least 1 km should be

achieved [McComiskey and Feingold , 2012]. As the required averaging time for a success-

ful dual-FOV forward iteration is about 3 min (cf. Subsection 6.2.3), this demand is fulfilled

for clouds moving with a moderate horizontal velocity of up to 5.5 m/s. The availability of

Doppler lidar measurements to derive the vertical wind speed (cf. Section 3.2) as well as the

advanced capabilities of multiwavelength Raman lidar measurements to derive a number of

aerosol properties enable the use of the dual-FOV Raman lidar technique, embedded in the

research platform LACROS, for studies towards objective A. The availability of profiles of

the cloud droplet size and CDNC within the cloud constitutes an important advantage of

this approach. Furthermore, the measurement of the LWC is of relevance as it allows the

comparison of the obtained LWC profiles with LWC profiles assuming adiabatic conditions.

Thus, the magnitude of entrainment can be assessed. This potential is of great interest as

entrainment has a strong influence on the magnitude of aerosol-cloud interactions [Kim et al.,

2008].

In principle, objective B can be pursued as well because of the possibility of long-term

measurements with the dual-FOV Raman lidar technique. However, the limited penetration

depth of the dual-FOV Raman lidar technique is a drawback for this aim. For a cloud’s effect

on the earth’s radiative budget, the upper cloud layers are more important than the cloud

properties of the layers below, especially in the case of thick clouds. Still, thin clouds can be

completely or almost completely penetrated with the dual-FOV Raman lidar technique and

the contribution of a cloud parcel to the cloud’s albedo is almost independent of its vertical

position relative to cloud base and top [Lacis and Hansen, 1974; Bohren, 1987; King , 1987].

The fraction of these clouds, among the ice-free, non-precipitating clouds occurring over

Leipzig during night time is extraordinarily high, which can be also seen from the overview

of the measurements performed for this thesis [TROPOS - LACROS , 2013].

A further drawback of the dual-FOV Raman lidar technique is the restriction of the cloud

measurements to night time. This constraint is especially severe for the pursuit of objective

B – the investigation of the effect of clouds on earth’s radiative budget through the scattering

of sunlight. Nevertheless, regarding the currently poor understanding about aerosol-cloud

interactions, also studies utilizing solely night time measurements are beneficial. These

studies are expected to contribute to the understanding of aerosol-cloud interactions related

to the Twomey effect as well, because the basic physical principles remain identical.
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The confinement of the measurements to one single location is a hindrance for an over-

all understanding of aerosol-cloud interactions, particularly for the pursuit of objective B.

However, the measurements are another step towards a better understanding of aerosol-

cloud interactions. Furthermore, the investigations conducted in the scope of this work are

a demonstration of the capabilities of this technique and might be a motivation to perform

dual-FOV Raman lidar cloud probings also at other locations within a network approach.

As the dual-FOV Raman lidar technique suits principally both objectives A and B it

is one of the few measurement techniques that can link the insights obtained by following

both approaches. This link is very important for a deeper understanding of aerosol-cloud

interactions since it can bring together outcomes from numerous investigations.

6.3.2 Comparison with other ground-based cloud probing techniques

The basic advantages as well as drawbacks of various measurement approches to investigate

aerosol-cloud interactions were explained in the Subsections 2.2.5 to 2.2.7. Therefore, this

subsection is confined to the comparison of the dual-FOV Raman lidar techniques to other

active ground-based remote-sensing techniques for cloud measurements.

Comparison with other lidar measurement techniques

In comparison with the lidar techniques presented in Subsection 5.1.2, the dual-FOV Raman

lidar technique stands out as the most robust and straightforward approach, considering

measurement setup and retrieval algorithm to derive profiles of the cloud droplet size. This

is a great and important advantage regarding investigations of aerosol-cloud interactions,

especially because robust setups are important for long-term measurements. The major

drawback of the dual-FOV Raman lidar technique is the restriction to night time measure-

ments. A minor point is that the only alternative approach for deriving profiles of the cloud

droplet size [Bissonnette and Hutt , 1995; Bissonnette et al., 2002, 2005] works up to opti-

cal depths of 4 to 4.5, exceeding the average penetration depth of the performed dual-FOV

Raman lidar cloud probings of about 3.0 slightly.

Comparison with radar measurements

As mentioned in Section 3.4, cloud microphysical properties can be retrieved with radar

measurements. In several investigations of aerosol-cloud relationships radars were employed

[Feingold et al., 2003; McComiskey et al., 2009]. Profiles of LWC, cloud droplet size, and

CDNC can be obtained. With the capability of penetrating even thick clouds these profiles

can be derived up to the upper cloud layers which are most important for the cloud albedo.

A further advantage of radar cloud probings is the possibility to perform not only night time

but also day time measurements.

Despite the advantages of radar measurements, there are also shortcomings. The accuracy

of the radar retrievals for thin water clouds is modest, also because of the limited accuracy

of the corresponding MWR measurements which are used by the radar retrievals. Hence, for
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the examination of the radiative effects of these clouds in earth’s radiative budget, dual-FOV

Raman lidar measurements are the ideal complement to radar probings.

Also for investigations regarding objective A, the dual-FOV Raman lidar technique is the

ideal complement to radar measurements as it can remedy the problems of radar retrievals

at cloud base. The retrievals used to analyze radar measurements show their largest un-

certainties at cloud base because of the limited sensitivity of radar measurements to small

droplets, which are formed in this region. This deficiency is an important drawback because

of the importance of the cloud base region for investigations of aerosol-cloud interactions (cf.

Subsection 2.2.2). The highly demanded measurements at cloud base become possible with

dual-FOV Raman lidar measurements, which have a very high sensitivity at cloud base as

this is the region where the detected lidar signals are least attenuated.

Additionally, the synergy of radar and dual-FOV Raman lidar measurements provides

profiles of cloud microphysical properties from base to top. Thereby, it establishes a link

between investigations pursuing objective A (requiring information at cloud base) and B

(requiring primarily information at cloud top).

Furthermore, dual-FOV Raman lidar measurements can be employed to enhance radar

retrievals. For example, the retrieval of Martucci and O’Dowd [2011] requires the knowledge

of the profile of the extinction coefficient inside the cloud from lidar measurements. Not con-

sidering multiple-scattering effects in water clouds, conventional lidar data analysis methods

lead to errors of the retrieved extinction coefficient of up to 50% [Wandinger , 1998]. The

dual-FOV Raman lidar technique suits ideally to overcome this problem.
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Chapter 7

Case studies

The following chapter presents four case studies for which cloud microphysical properties

are derived with the dual-FOV Raman lidar technique. These studies deal with aerosol-

cloud interactions, a comparison of CCN concentration and CDNC, and the influence of

the vertical wind velocity on cloud microphysical properties. On the one hand, these case

studies deal with issues of high scientific interest. On the other hand, these investigations

illustrate the capabilities of the dual-FOV Raman lidar technique to examine aerosol-cloud

interactions with a profound approach as the case studies do not merely assess the aerosol

particle extinction coefficient and cloud droplet effective radius but also the cloud dynamics,

the APNC, and CDNC. Parts of this chapter have been published in Schmidt et al. [2014]

and are adopted without explicit citing.

7.1 Altocumulus in clean and moderately polluted air

In Section 6.3 the feasibility to examine aerosol-cloud interactions with the Raman lidar

MARTHA, employing the dual FOV technique, was asserted. In this section, a case study is

presented in which aerosol-cloud relationships are investigated. The results of two dual-FOV

Raman lidar probings of warm, layered altocumulus clouds are compared. As reasoned in

Subsections 6.3.1, the aerosol particle extinction coefficient is utilized as a measure for the

aerosol load below the cloud and thus CCN concentration. The cloud response to a change

in aerosol load was examined in terms of the cloud droplet effective radius as well as CDNC.

Fig. 7.1 shows the time-height cross section of the range-corrected lidar signal at 532 nm

from the inner FOV of MARTHA of the measurements performed on 26 July 2011 and 5

September 2011 with FOV pairs of 0.78 and 3.8 mrad and 0.5 and 2.0 mrad, respectively. The

signal averaging periods used for the cloud analysis are indicated by pink lines in Fig. 7.1.

The probed layered clouds formed at free-tropospheric heights above 2.5 km in clean

and polluted air. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)

model [Draxler and Rolph, 2013] was employed to identify the origin of the air masses by

calculations of ten-day backward trajectories, which are shown in Fig. 7.2. The rather clean

air mass measured on 26 July 2011 was advected from Greenland over Iceland and the
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Figure 7.1: Altocumulus layers (in red) observed with MARTHA on 26 July 2011 (top) and 5

September 2011 (bottom). The range-corrected signal (arbitrary units) at 532 nm from the inner

FOV is shown. The time period used for the cloud analysis is indicated by pink lines. For the

retrieval of the aerosol backscatter and extinction coefficients on 26 July, displayed in Fig. 7.3, the

complete time period shown here is used. For the retrieval of the aerosol properties on 9 September

the purple hatched time period was not considered. The cloud-top temperatures, derived from the

GDAS temperature profiles for grid point Leipzig at 0:00 UTC on 26 July 2011 and 21:00 UTC on

5 September 2011, are given as white numbers. The left panels show the signal profiles from the

outer FOV at 607 nm measured during the time periods highlighted with pink lines. The cloud

base heights, derived from these profiles, are indicated with orange lines.
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Figure 7.2: Ten-day backward trajectories calculated with HYSPLIT. The trajectories arrive

over Leipzig at altitudes of 1.8, 2.3, and 2.8 km on 26 July 2011, 1:00 UTC (left) and at altitudes

of 2.0, 2.5, and 3.0 km on 5 September 2011, 20:00 UTC (right).

North Atlantic towards Germany. Hence, the corresponding cumulus layer developed under

background aerosol conditions. The hazy air mass on 5 September 2011 originated from

polluted regions of North America and crossed polluted parts of western Europe before

arriving at Leipzig, Germany, according to the backward trajectory analysis.

Profiles of the particle extinction and backscatter coefficients at 532 nm, which are dis-

played in Fig. 7.3, were derived from the Raman lidar measurement (cf. Subsections 4.2.2

and 4.2.3). For the determination of the aerosol backscatter and extinction coefficients on 26

July 2011 the complete time period shown in Fig. 7.1 was used, because the corresponding

aerosol layer is relatively homogeneous and thus represents the aerosol properties in the time

period utilized for the cloud analysis. For the retrieval of the aerosol properties on 5 Septem-

ber 2011 the purple hatched time period was excluded. The occurrence of clouds in about

2.7 km altitude and the corresponding influence of water uptake by particles leads to an in-

crease of the particle backscatter and extinction coefficients, which is not correlated with the

APNC in the time period in which the cloud properties were derived. The reference heights

for the profiles of the backscatter coefficients were set in relatively homogeneous aerosol layers

with few hundred meters extent below the clouds. The corresponding values of the backscat-

ter coefficients in these layers were obtained from the profiles of the backscatter coefficients

derived from the cloud-free profiles shown in Fig. 7.1, which have in the corresponding height

range similar structures as in the time periods of the cloud analyses. The reference heights

for the profiles from the cloud-free periods were set in the upper troposphere.

In the case of the extinction coefficient a smoothing length of 500 m was applied. For

the determination of the backscatter coefficient, displayed in Fig. 7.3, a smoothing length



80 CHAPTER 7. CASE STUDIES

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

km
)

0 25 50 75 100

0.0 0.5 1.0 1.5

 (Mm  )-1α

 (Mm-1 sr  )-1β

Signal (counts)
100 1000

(a) (b)

0 25 50 75 100

0.0 0.5 1.0 1.5
 (Mm-1 sr  )-1β

 (Mm  )-1α

1.5

2.0

2.5

3.0

H
ei

gh
t (

km
)

Signal (counts)
100 1000

(c) (d)

26 July 2011 5 September 2011

Figure 7.3: (a) Profiles of the aerosol particle extinction α (black) and backscatter coefficients

β (red) below the clouds measured from 00:00–01:18 UTC on 26 July 2011 and (c) from 19:35–

19:49 and 19:58–20:06 UTC on 5 September 2011. The scalings of the backscatter coefficients

with regard to the extinction coefficients correspond to the derived lidar ratios of 60 and 65 sr,

respectively. The altitude ranges used for the determination of the average extinction coefficients

and lidar ratios are highlighted in green. (b), (d) Signal profiles from the outer FOV at 607 nm

for the corresponding cloud measurements. The cloud base height, derived from these profiles, is

highlighted in orange.

of 60 m was used. The lidar ratio was calculated in the altitude where both extinction and

backscatter coefficients could be derived. For this calculation the same smoothing length was

applied to the profiles of the backscatter and extinction coefficients (500 m). Lidar ratios of

60 ± 14 and 65 ± 20 sr were obtained from the measurements on 26 July and 5 September,

respectively. These lidar ratios are typical for aged fine-mode particles of anthropogenic

origin [Müller et al., 2007].

The profiles of the particle extinction coefficients, used to quantify the aerosol loads below

the clouds, were calculated from the derived profiles of the particle backscatter coefficients

and the obtained lidar ratios. The advantage of this method, compared to the utilization of

the extinction coefficient calculated directly from the measured Raman signal according to

Section 4.2.3, is the higher signal-to-noise ratio as well as the finer height resolution which

enables a better representation of the aerosol load directly below the clouds. Furthermore,

this methods allows the determination of the extinction coefficient also in lower altitudes

(with the assumption that no variations in the aerosol type occur) as the backscatter coeffi-

cient derived with the Raman method is far less susceptible to the overlap function than the

extinction coefficient (cf. Section 4.2.2).

The increase of the extinction coefficient due to the growth of aerosol particles in a humid

environment was treated already in Section 6.1.4. This increase, which is caused by aerosol

growth and which is not correlated with an increase in CCN concentration, was obtained
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Figure 7.4: Cloud microphysical properties (extinction coefficient α, effective radius reff, liquid

water content LWC, and CDNC) obtained with the forward iterative algorithm. Error bars show

the corresponding uncertainties. On 26 July (red profiles) the aerosol load below cloud base was a

factor of two to three lower than on 5 September 2011 (blue profiles). For similar LWC conditions,

larger cloud droplets and lower CDNC are observed in the lower part of the cloud in the case of

the lower aerosol load.

already 100 m below cloud base. Figure 7.3(c) as well as the profiles of the extinction coef-

ficients from the follwing case studies, presented in Fig. 7.9 and 7.14, show a corresponding

increase already about 300 m below cloud base. Hence, for the quantification of the aerosol

load below the clouds the extinction coefficient within a distance of 300 m to the cloud base

was not considered. The extent of the layer, where the extinction coefficient is to be con-

sidered and averaged, was set to 700 m to minimize the effects of signal noise. Thus, the

aerosol particle extinction coefficients were averaged from 300 to 1000 m below cloud base.

The measurement on 26 July shows an average extinction coefficient of 12 Mm−1 which con-

stitutes a rather clean case, whereas the measurement from 5 September shows an average

extinction coefficient of about 29 Mm−1 and thus can be considered as a hazy aerosol case.

The cloud microphysical properties retrieved with the forward iterative algorithm are

presented in Fig. 7.4. In the lower part of the clouds the LWCs are similar with slightly

larger values in the clean case. The cloud in the hazy case shows smaller droplet effective

radii than the cloud in the clean case. In the height range between about 30 and 70 m above

cloud base, the cloud droplet effective radii are 5.1 and 9.6µm in the hazy and clean case,

respectively, for LWCs of 0.054 and 0.083 g/m3. These findings correspond to aerosol-cloud

interactions related to the Twomey effect, although the differences in LWC might play a role

for the differences in cloud droplet size as well. The difference between the effective radii is

about a factor of two, whereas the LWC difference is about a factor of 1.5.

The case becomes clearer with the comparison of the profiles of the CDNC. In penetration

depths between about 30 and 70 m the CDNC is much higher in the hazy case (180±150 cm−3)
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than in the clean case (50±40 cm−3). Care has to be taken with quantitative analyses due to

the large errors of the derived CDNCs. However, it should be mentioned that the difference

between the CDNCs of a factor of about 4 is similar to the difference of the aerosol extinction

coefficients below the clouds which is of the order of a factor of 3.

However, above a penetration depth of about 90 m the observed behavior of the cloud

microphysical properties reverses. In this height region, the cloud with the higher aerosol

load below exhibits larger droplet radii and a lower CDNC. This finding illustrates that

aerosol-cloud relationships are strongest in the lower part of clouds. In larger penetration

depths other cloud processes, such as coagulation or various mixing processes, may become

dominant.

Three main conclusions can be drawn from this case study. First, the dual-FOV Raman

lidar technique is capable of assessing aerosol-cloud interactions. Second, the capability of

deriving profiles of cloud microphysical properties is of extraordinary importance. Without

the profiling information and thus the access to the cloud microphysical properties in the

lower part of the cloud, the effect of aerosol-cloud interactions could not be ascertained in

this case. Third, despite the large errors (cf. Subsection 6.2.4), the CDNC is an important

quantity for investigations of aerosol-cloud interactions. As possible effects of changing LWCs

do not have to be considered the analyses become clearer.

7.2 CDNC at altocumulus cloud base and CCN concentration

In Subsection 4.2.5 it was stated that aerosol microphysical properties, e.g., APNC, can be

derived from multiwavelength Raman lidar measurements, applying the method of inversion

with regularization. Here, this capabality is used to assess the CCN concentration in the

proximity of two clouds and to compare this concentration with the CDNC at the cloud bases

obtained from dual-FOV Raman lidar measurements. Figure 7.5 shows two probed cloud

layers in an altiutude of 3.3 and 3.7 km. The time periods utilized for the cloud analyses are

indicated with pink lines. The cloud-free period from 19:10–19:30 UTC between the clouds

was used for the aerosol analysis. The measurement was performed with FOVs of 0.5 and

2.0 mrad.

The aerosol optical properties for the cloud-free period are presented in Figs. 7.6(a) to

(d). In the case of the extinction profiles, the Raman signals were vertically smoothed with

a height-dependent window length of 500 to 800 m. For the calculation of the lidar ratio, the

same smoothing length was applied to the profiles of the backscatter coefficients. In contrast,

the backscatter coefficients shown in Fig. 7.6(a) are given with a resolution of 60 m. The

aerosol optical properties indicate moderately polluted aerosol conditions up to 3 to 4 km

height. The 532-nm particle extinction and backscatter coefficients were about 20 Mm−1 and

0.4 Mm−1sr−1, respectively.

These results were utilized to derive the APNC of the accumulation and coarse modes

(retrieval radius range from 0.05 to 5µm) with the inversion method. In this case, the number

concentration of aerosol particles which are in the height range of the probed clouds and are
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Figure 7.5: Time-height cross section of the range-corrected lidar signal from MARTHA at

532 nm, inner FOV. The time periods used for the cloud studies are indicated by pink lines. The
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Figure 7.6: (a)–(d) Aerosol optical properties used for the inversion scheme. The profiles were

measured on 29 August 2012 in the cloud-free period from 19:15 to 19:30 UTC. The relative

errors of the backscatter and extinction coefficients were estimated to 10%. From these errors

the uncertainties of the lidar ratios and Ångström exponents were derived according to Gaussian

error propagation. (e) Number concentration of aerosol particles with a radius greater than 85µm,

which are assumed to be capable of acting as CCN. The corresponding values are given for the

600-m-thick aerosol layers in the altitudes around 2.7 and 3.5 km, characterizing the aerosol below

the cloud and at cloud formation level, respectively.
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of sufficient size to be potential CCNs is of particular interest. Although dependent on the

supersaturation at cloud base (cf. Section 2.1), this critical size, also denoted as activation

radius, is typically about 50 nm [Twohy et al., 2005; Dusek et al., 2006; Asmi et al., 2012;

Kleinman et al., 2012; Ditas et al., 2012]. However, the activation radius of about 50 nm

refers to aerosol particles in a dry environment. The probed aerosol layers are exposed to

humidity and thus aerosol particle growth.

For the estimation of the impact of this effect, the profile of the relative humidity for

the corresponding time period was determined from the water-vapor mixing ratio measured

with MARTHA [Mattis et al., 2002]. For the required calibration, the integrated water-vapor

content obtained with the MWR was used. The profiles of temperature and pressure were

taken from the simulated GDAS sounding at 18 UTC. In the height range from 3.2 to 3.8 km

a relative humidity of 65% was found. Compared to aerosol particles in a dry environment,

this humidity leads to a growth factor for the aerosol particle radius of about 1.7 for a

gamma value of 0.5, which is the average value for aerosol particles over Leipzig [Skupin,

2013]. Thus, the dry activation radius of 50 nm corresponds to a particle radius of about

85 nm under the conditions present in the aerosol layer between the clouds in the altitude of

the cloud occurrence (3.2 to 3.8 km).

The APNC for particles exceeding this size was determined to about 300 cm−3 with

an uncertainty of approximately 150 cm−3 in the corresponding aerosol layer. Due to the

homogeneity of the probed aerosol layer this result is supposed to be representative for the

airmass in which the clouds formed. This result as well as the similarly obtained APNC in

about 2.7 km altitude are displayed in Fig. 7.6(e).

Figure 7.7 presents the microphysical properties of the two clouds. The cloud extinction

coefficients and the LWC values are higher in the upper cloud layer (displayed in blue) than

in the lower one (displayed in red). Effective radii are similar in both clouds. The CDNC

values are rather uncertain because of the relatively large errors in the cloud droplet effective

radii of 25% to 40% and a respective error contribution to the CDNC relative uncertainty of

50% to 100% (cf. Subsection 6.2.4). The co-located cloud radar did not indicate any drizzle

formation.

According to Figs. 7.6(e) and 7.7, the CDNC is of the order of 50 to 80 cm−3 with relative

errors of about 100% in the lowest part of the cloud layers, whereas the APNC is around

300± 150 cm−3 in the corresponding altitude. Despite of the large errors in both the CDNC

and APNC the tendency that only a fraction of the aerosol particles with dry radii exceeding

50 nm acts as CCN becomes obvious. Roughly 15% to 25% of these aerosol particles served

as CCN in this measurement case. However, the relative error of these values is about 110%

which expands the error range of the derived CDNC/APNC ratio from 0.07 to 0.53.

Airborne in-situ measurements in the stratocumulus-topped marine boundary layer over

the Pacific, which assessed the APNC for particles larger than 50 nm in dry radius, yield

CDNC/APNC ratios of 0.6 to 1.0 at CDNCs of 25 to 400 cm−3 with the tendency of slightly

higher CDNC/APNC ratios for smaller CDNCs [Twohy et al., 2005, 2013; Kleinman et al.,

2012]. At an European continental mountain site, Asmi et al. [2012] observed CDNC/APNC
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Figure 7.7: Cloud microphysical properties obtained from the dual-FOV Raman observation on

29 August 2012, 19:04–19:07 (displayed in blue) and 19:34–19:39 UTC (displayed in red). The

lowest 20 m of the clouds show CDNCs of 79± 106 and 49± 65 cm−3.

values of 0.5–0.7 within the continental PBL. Large variations in the ratio were typical for

all observations.

Considering the uncertainties of the applied method as well as the uncertainties of the

methods in the cited publications, these results agree to a certain degree, with a ten-

dency of a lower CDNC/APNC ratio derived with ground-based remote sensing. Generally

CDNC/APNC ratios below 1 are reasonble for the following reason. For both the cited stud-

ies as well as the dual-FOV Raman lidar measurements the cloud properties are mean values

for the entire cloud without consideration of up- and downdraft regions. At best during up-

draft periods, when aerosol particles are mixed into the cloud, one might expect the aerosol

to dominate the cloud properties at cloud base, which would cause a CDNC/APNC ratio

of about 1. In other time periods, coagulation, evaporation, and various mixing processes

may take place to a significant extent, decoupling CCN concentration below cloud base and

CDNC at cloud base to some degree. The mentioned processes will also occur in cloud regions

with moderate updrafts although to a much smaller extent. Hence, differences in vertical

wind velocities also might cause the differences of the CDNC/APNC ratios between this and

the cited studies. The cause for not considering the vertical wind speed in the dual-FOV

Raman lidar measurement was the short duration of the cloud probing. Thus, the averaging

time for the analysis considering updraft-influenced profiles only, would have been too short

for a successful run of the forward iterative algorithm to retrieve the cloud properties.

7.3 Influence of up- and downdraft motions

In this section, the impact of up- and downdrafts on the evolution of the microphysical

characteristics of layered clouds is discussed. This examination is done on the basis of two



86 CHAPTER 7. CASE STUDIES

case studies for which combined measurements of the Doppler wind lidar WiLi and the

dual-FOV Raman lidar MARTHA are analyzed.

7.3.1 Activation and downmixing of large droplets

Figure 7.8 shows a dual-FOV Raman lidar measurement performed on 15 August 2011. A 150

to 250 m thick, stable cloud layer was present for more than two hours. There was no drizzle

observed with the cloud radar. The FOVs employed in the dual-FOV lidar measurement

were 0.5 and 2.0 mrad. The pink lines in Fig. 7.8 indicate the time period used for the

cloud analysis. During this period, the altocumulus showed homogeneous structures with a

constant cloud base height at 2.78 m (cf. Fig. 7.8). Afterwards, the cloud base height was

slightly lifted by about 50 to 100 m.

The profiles of the aerosol particle backscatter and extinction coefficients are shown

in Fig. 7.9. The backscatter profile increases from 300 m below cloud base onwards due to

particle water uptake. The particle extinction coefficient ranges from 20 to 50 Mm−1 between

1.5 and 2.5 km height. For the height range from 1.8 to 2.3 km, a lidar ratio of 55 sr was

found.

The vertical wind velocity at the cloud base, obtained with the Doppler lidar for the

selected 16-minute cloud observation, is presented in Fig. 7.10 (top). Corresponding vertical

wind statistics are shown in Fig. 7.10 (bottom). The up- and downdraft speeds were mostly

below 0.5 m/s.

The measured dual-FOV Raman signals were sorted according to the occurrence of up-

and downdrafts. A dual-FOV Raman signal profile was assigned to an updraft or downdraft

region, if the corresponding vertical velocity showed a positive or negative value at cloud

base, respectively. 83 updraft-related and 123 downdraft-related MARTHA signal profiles
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Figure 7.8: Time-height cross section of the range-corrected lidar signal (arbitrary units) from

MARTHA at 532 nm, inner FOV. The time period used for the cloud study is indicated by pink

lines. The cloud-top temperature, derived from the GDAS temperature profiles for grid point

Leipzig at 21:00 UTC on 15 August 2011, is inscribed in white color. The left panel shows the

signal profile from the outer FOV at 607 nm, measured during the time period used for the cloud

analysis. The cloud base height, derived from this profile, is highlighted with an orange line.
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Figure 7.9: Left: profiles of the aerosol particle extinction α (black) and backscatter coefficient

β (red) measured on 15 August 2011, 20:29–21:30 UTC. The backscatter coefficients are almost

equal to the extinction coefficients when multiplied with a lidar ratio of 55 sr. Right: signal from

the outer FOV at 607 nm, measured in the time period used for the cloud analysis. The cloud

base height was derived from this signal and is highlighted in orange. The higher humidity below

cloud base leads to an increase of the backscatter coefficient by a factor of 3.5 from 0.38 Mm−1 at

2.4 km height to 1.3 Mm−1 at 2.75 km height.

(each accumulated over 4 s) were averaged. Afterwards, the forward iterative algorithm was

applied to both data signal sets separately.

Figure 7.11 presents the derived cloud microphysical properties. A clear difference in the

cloud properties for updraft and downdraft periods is especially visible in the cloud droplet

extinction coefficient in the lowermost height level of the cloud layer. This finding results

from a higher CDNC at cloud base during updrafts of about a factor of three. That increased

CDNC can be attributed to new droplet formation. Lower cloud droplet effective radii in the

ascending air, in particular in the second height level, are consistent with this hypothesis.

A further reason for the larger cloud droplets in downdraft regions may be the downward

transport of cloud parcels from the well-developed upper cloud part, which contains larger

particles.

7.3.2 Entrainment

Another cloud probing with MARTHA and WiLi is shown in Figs. 7.12 and 7.13. The FOVs

employed for the dual-FOV measurement were 0.5 and 2.0 mrad. Again an ice-free cloud was

analyzed. Major variations of the cloud base height and holes in the measured cloud field

occurred. Furthermore, some parts of the analyzed cloud at 2.38 km height were obscured

by clouds below. The corresponding time periods were not considered for the data analysis.

In Fig. 7.13 (top) these periods are indicated by black columns. In the time periods used for



88 CHAPTER 7. CASE STUDIES

Time (UTC)

H
ei

gh
t (

km
)

V
el

oc
ity

 (m
/s

)

-2

0

2

2.6

2.9

20:29 20:32 20:36 20:39 20:42 20:46

2.8

2.7

0.00

0.05

0.10

0.15

R
el

at
iv

e 
oc

cu
rr

en
ce

Vertical wind speed (m/s)
-1.0 -0.5 0.0 0.5 1.0

15 August 2011

Figure 7.10: Top: vertical wind velocity at cloud base measured with WiLi during the time

period indicated by pink lines in Fig. 7.8. Bottom: relative occurrence of measured vertical wind

velocities (downdrafts in green, updrafts in orange) at cloud base, measured on 15 August 2011,

20:29–20:46 UTC. The cloud base height, derived from the signal profiles from the outer FOV (cf.

Fig. 7.9), is indicated by a purple dotted line.
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Figure 7.11: Cloud microphysical properties retrieved from the dual-FOV Raman lidar obser-

vations during updraft (orange) and downdraft (green) periods on 15 August 2011, 20:29–20:46

UTC.
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the cloud analysis, the cloud base height was determined to 2.4 km from the Raman signal

measured in the outer FOV (cf. Fig. 7.14). 74 4 s-profiles measured during updraft periods

and 100 downdraft profiles were used for the data analysis.

The observed up- and downdrafts were comparably weak, as shown by Fig. 7.13 (bottom).

Most vertical wind speeds (70%) were in the range from −0.2 m/s to 0.2 m/s, which is a

much larger fraction than in the measurement of 15 August 2011 (50%), presented in the

previous section. Especially updrafts show low absolute vertical velocities with only 5% of

the measured wind velocities exceeding 20 cm/s. These condition may be favorable for other

effects to become dominant, e.g., downward mixing of dry air from above the shallow cloud

layer.

The profiles of the backscatter and extinction coefficients below the cloud are presented

in Fig. 7.14. The lidar ratio is 45 sr. The extinction coefficient ranged from 45 to 110 Mm−1

in the altitude from 1.5 to 2.2 km.

The cloud microphysical properties, presented in Fig. 7.15, differ considerably from the

findings of the previous case study. Lower effective radii and lower LWC values were observed

around cloud center during the downdraft periods on 29 August. Entrainment of dry air from

above, which leads to evaporation, is a feasible explanation for this finding. The comparably

low updraft velocities may have been insufficient for strong new drop formation which would

then decrease the effective radius.

To corroborate the hypothesis of dry-air entrainment, the adiabatic LWC profile was cal-

culated. The microwave radiometer HATPRO allows the determination of the temperature

profile. The accuracy of this retrieval is about 1.5 K in an altiude range around 2.4 km

height [Löhnert and Maier , 2012]. A temperature of −0.2 ± 1.5◦C was obtained at cloud

base. For comparison, the simulated GDAS temperature at cloud base height was 0◦C for
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Figure 7.12: Time-height cross section of the range-corrected lidar signal from MARTHA at

532 nm, inner FOV. The time period used for the cloud study is indicated by pink lines. The

cloud-top temperature, derived from the GDAS temperature profile for grid point Leipzig on 29

August 2011, 21:00 UTC, is inscribed in white color. The left panel shows the signal profile from

the outer FOV at 607 nm measured during the time period used for the cloud analysis. The cloud

base height, derived from this profile, is highlighted with an orange line.
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Figure 7.13: Top: vertical wind velocity at cloud base measured with WiLi during the time

period indicated by pink lines in Fig. 7.12. Bottom: relative occurrence of measured wind velocities

(downdrafts in green, updrafts in orange) at cloud base, measured on 29 August 2011, 20:59–21:18

UTC. The cloud base height, derived from the signal profiles from the outer FOV (cf. Fig. 7.14),

is indicated by a purple dotted line.
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Figure 7.14: Left: profiles of the aerosol particle extinction α (black) and backscatter coefficient

β (red) measured on 29 August 2011, 19:32–20:14 UTC. The backscatter coefficients are almost

equal to the extinction coefficients when multiplied with a lidar ratio of 45 sr. Right: signal from

the outer FOV at 607 nm, measured in the time period used for the cloud analysis. The cloud

base height was derived from this signal and is highlighted in orange. The higher humidity below

cloud base leads to a strong increase of the backscatter coefficient.
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Figure 7.15: Cloud microphysical properties retrieved from the dual-FOV Raman lidar obser-

vations during updraft (orange) and downdraft (green) periods on 29 August 2011, 20:59–21:18

UTC. The calculated profile of the adiabatic LWC is shown in pink with purple lines indicating

its error margin, which results from the uncertainty of the temperature at cloud base (±1.5 K).
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grid point Leipzig at 21:00 UTC on 29 August 2011. The computed profile of the adiabatic

LWC presented in Fig. 7.15 suggests an adiabatic increase for the updraft times, which is

reasonable when droplet growth through condensation dominates. For the downdraft times,

the subadiabatic LWC profile is consistent with entrainment of dry air from above.

7.3.3 Aerosol-cloud interactions under consideration of vertical wind speed

The importance of the vertical wind speed for studies of the microphysical processes of

aerosol-cloud interactions was explained in Subsection 2.2.2. Here, the combined measure-

ments of the dual-FOV Raman lidar and Doppler wind lidar presented in the two previous

sections are utilized for a case study about aerosol-cloud interactions and the role of the

vertical wind speed. The approach of this case study resembles the concept of the case

study given in Section 7.1. Cloud properties, derived with the dual-FOV lidar technique,

are compared for measurements with different aerosol extinction coefficients below the cloud,

obtained from the Raman lidar measurement. To quantify the observations, ACIN values,

which were introduced in Subsection 2.2.3, are calculated. However, it has to be mentioned

that for a quantitiative analysis of aerosol-cloud interactions, for which the ACI concept was

actually developed, two measurement cases are by far not sufficient. Not only measurement

uncertainties make an accurate determination of aerosol-cloud relationships impossible but

especially the wide range of further influences on cloud properties (cf. Subsection 2.2.1).

Hence, this case study is merely meant as an illustration of the capability of combined dual-

FOV and Doppler lidar measurements as well as an introduction to the ACI approach, for

the facilitation of the understanding of the following chapter.

For the analysis, cloud microphysical properties obtained for updraft periods are con-

trasted to those during the respective complete cloud periods. Furthermore, both the cor-

responding cloud properties at the cloud bases as well as their averages over the clouds’

vertical extents are compared. Hence, four scenarios are distinguished in this case study:

(a) ACIN calculation with cloud properties at the lowest height level and by considering

updraft periods only, (b) same as scenario (a) but including all (updraft and downdraft)

periods in the ACIN computation, (c) ACIN calculation with vertical mean cloud properties

considering updraft periods only, and (d) same as scenario (c) but including all (updraft and

downdraft) periods in the calculation. Figure 7.16 shows the aerosol extinction coefficients

below the clouds. Furthermore, the CDNCs in the lowest height levels of the clouds, derived

for the complete analysis time period as well as during updraft periods only, are presented.

Similarly to the procedure applied in Section 7.1 the aerosol particle extinction coefficents

were averaged in a layer with a 300-m distance to the cloud base. However, in this case

study the extent of this layer is only 200 m in contrast to the 700 m used in Section 7.1.

Both profiles show 800 m below cloud base a behavior which is different to the trend above.

Hence, a smaller height range is supposed to be more representative for the aerosol conditions

directly below the clouds. The measurements performed on 15 and 29 August 2011 yield an

average aerosol particle extinction coefficient of 22 and 53 Mm−1, respectively.
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Figure 7.16: Aerosol and cloud properties used for the derivation of ACIN values. The aerosol

particle extinction coefficients for the measurements on 15 and 29 August 2011, which are the

same as in Subsection 7.3.1 and 7.3.2, are shown below the clouds with solid lines in red and blue,

respectively. The height range of 300 to 500 m below cloud base, where the extinction coefficients

were averaged for the ACIN calculation, is highlighted in green color. The CDNCs in the lowest

cloud layer are shown with corresponding colors for updraft periods (triangles) as well as for the

entire cloud probings (squares).
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The LWPs of the probed clouds are about 30 and 10 g/m2 on 15 August and 29 August,

respectively. Due to this strong difference, only the utilization of the CDNC instead of the

cloud droplet effective radius to derive ACIN is reasonable for scenarios (c) and (d) for which

integrated cloud properties are compared. For reasons of comparability, this is done for all

scenarios.

The derived ACIN values for scenarios (a) to (d) are presented in Table 7.1. Although

it was emphasized that this case study is a mere illustration of the measurement technique

and analysis approach, reasonable results were obtained. At the cloud base, where aerosol

particles are mixed into the cloud, stronger aerosol-cloud relationships were derived. The

corresponding ACIr values of 0.18±0.13 and 0.24±0.17 (cf. Eq. (2.6)) match to most of the

results from airborne in-situ and ground-based remote-sensing studies. However, the weaker

coupling of aerosol and cloud properties at cloud base during updraft periods contradicts

the understanding of aerosol-cloud interactions and is attributed to other cloud-influencing

factors.

Table 7.1: ACIN values of the presented case study. Cloud properties are considered at the

cloud base as well as over the complete vertical cloud extent during updraft periods only as well

as during the complete cloud probing.

Updraft Periods Complete Cloud

Cloud Base 0.55± 0.38 0.71± 0.52

Vertical Mean 0.32± 0.17 −0.07± 0.04

To assess aerosol-cloud interactions with the focus on cloud microphysical properties

(objective A), scenario (a) provides optimum conditions. The ACIN values of the other

three scenarios (b)–(d) differ significantly (30% to 100%) from the value derived for scenario

(a). This finding illustrates that downdrafts, turbulent mixing, and entrainment processes

may reduce any clear aerosol effect on cloud microphysical properties on the way up through

the cloud layer, which is in agreement with the work of Kim et al. [2008].

The findings from this case study support a central conclusion drawn from the case study

presented in Section 7.1: for investigations of aerosol-cloud interactions, profile information

of the measured cloud properties are of high relevance, particularly due to the importance

of cloud properties derived directly at cloud base. A further major conclusion from this

case study is the high relevance of the vertical wind speed for cloud microphysical properties

in general and aerosol-cloud interactions in particular. Combined measurements with the

dual-FOV Raman lidar and the Doppler wind lidar are capable of assessing the effects of

vertical air motion on clouds.
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Chapter 8

Statistical analysis of aerosol-cloud

interactions

In Subsection 2.2.7 and Section 6.3 the suitability of ground-based remote-sensing techniques

in general and the dual-FOV Raman lidar technique in particular to investigate aerosol-cloud

relationships was outlined. Furthermore, case studies presented in Chapter 7 were used to

illustrate the capabilities of the dual-FOV Raman lidar technique. Subsequently, this chapter

provides a statistical analysis of observed aerosol-cloud relationships.

29 dual-FOV Raman lidar cloud measurements are considered. These measurements

were performed between September 2010 and August 2012. All investigated clouds were

layered, thin clouds, which are most suitable for studies of aerosol-cloud interactions (cf.

Subsection 2.2.2).

The first section of this chapter describes the applied procedures for data analysis. Sec-

tion 8.2 gives an overview of the derived aerosol and cloud properties. The statistical results

regarding aerosol-cloud interactions are presented in Section 8.3. The chapter closes with a

discussion of the obtained results in Section 8.4.

8.1 Procedure of data analysis

The aerosol load below the cloud is characterized by means of the profile of the aerosol particle

extinction coefficient, which was derived with the procedure described in Subsection 7.1. In

case the lidar ratio could not be derived below the probed cloud due to the effect of the

overlap function, the profiles measured in cloud-free periods were utilized for the calculation.

The retrieval of cloud microphysical properties from dual-FOV Raman lidar measure-

ments is explained in detail in Chapter 5. The cloud microphysical properties were averaged

in defined height ranges. Three height ranges were used, which extend from 0 to 30 m, 30

to 70 m, and 70 to 120 m above cloud base. Thus, aerosol-cloud relationships can be inves-

tigated in several cloud penetration depths (height ranges above cloud base). The choice of

the height ranges was already explained in Subsection 6.2.4, with the most important point

that influences of variations of the cloud base height are restricted to the lowermost height
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range. As the height ranges employed in that Subsection are identical, it gives the mean

relative errors of the derived cloud quantities.

The approach of ACI values for the quantification of aerosol-cloud relationships was

explained in Subsection 2.2.3. The approach was introduced for a case study presented in

Subsection 7.3.3. Here, for each aerosol height range and cloud penetration depth ACI

values were calculated from the analyzed dual-FOV Raman lidar measurements according

to Eq. (2.2) and (2.3). The logarithms of the cloud droplet effective radii and CDNC as

well as the logarithm of the layer mean aerosol extinction coefficient below the cloud were

calculated. The derivative of the corresponding linear regression of these data gives −ACIr

and ACIN, respectively.

8.2 Overview of retrieved aerosol and cloud properties

8.2.1 Aerosol properties

A histogram of the mean extinction coefficients for the height range from 300 to 1000 m below

cloud base is presented in Fig. 8.1. Table 8.1 lists the minimum, maximum, average, and

standard deviation of the derived extinction coefficients. The average of 52 Mm−1 matches

well with the findings from Mattis et al. [2004], who presented the results of lidar data

analyses for measurements at Leipzig between 2000 and 2003. The authors obtained a

mean extinction coefficient of about 50 Mm−1 for the height range from 500 to 4000 m which

corresponds to the height range for the aerosol analyses in this work (cf. Fig. 8.3 and Table 8.3

for obtained cloud base heights). The comparatively large range of extinction coefficients

derived in this work, which extend from about 10 Mm−1 to almost a factor of three of

the average value obtained over Leipzig, is convenient for investigations of aerosol-cloud

interactions.
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Figure 8.1: Relative occurrence of aerosol particle extinction coefficients for the height range

from 300 to 1000 m below cloud base.
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Table 8.1: Statistics of derived aerosol particle extinction coefficients below cloud base.

Minimum 7 Mm−1

Maximum 130 Mm−1

Average 52 Mm−1

Standard deviation 34 Mm−1

8.2.2 Cloud properties

Figures 8.2 and 8.3 give an overview of the properties of all considered cloud layers. The fig-

ures show histograms of the mean cloud extinction coefficients (Fig. 8.2(a)), droplet effective

radii (Fig. 8.2(b)), LWCs (Fig. 8.2(c)), and CDNCs (Fig. 8.2(d)) for the cloud layers of 0 to

30 m, 30 to 70 m, and 70 to 120 m above cloud base. Furthermore, the cloud base heights

determined with the dual-FOV lidar measurement are shown in Fig. 8.3(a). The histogram

of the cloud vertical extents is presented in Fig. 8.3(b). In cases of additional cloud radar

measurements (21 out of 29 cases), the cloud top height was derived with the radar. In the

remaining cases, the cloud top height was estimated from the lidar signal measured at 532 nm

in the inner FOV. Fig. 8.3(c) displays a histogram of the LWPs. With 26 out of 29 cases, the

majority of the performed cloud probings were supported with MWR measurements, which

were utilized to derive the LWP. In the remaining cases, the LWP was estimated from the

dual-FOV Raman lidar measurements with support of the derived cloud vertical extent. The

cloud optical thickness, shown in Fig. 8.3(d), was estimated with the dual-FOV Raman lidar

technique under consideration of the derived cloud vertical extent. In Tables 8.2 and 8.3 the

minima, maxima, averages, and standard deviations of the mentioned quantities are listed.

The probed clouds were rather thin, which shows a comparison with Miles et al. [2000].

The authors compiled properties of continental stratocumuli derived in various measurement

campaigns by using airborne in-situ measurements. The clouds which occurred in similar

altitudes as the clouds probed in this work had a vertical extent of about 200 to 500 m. A

comparison of the other derived cloud properties showed that the obtained values generally

match with the results given by Miles et al. [2000]. Most clouds in the corresponding altitude

range had LWCs of 0.1 to 0.2 g/m3 and effective cloud droplet radii of 5 to 10µm. The

CDNCs given by Miles et al. [2000] tend to be slightly higher with values between 100 and

300 cm−3. However, these values allow only for a rough comparison because most works

presented by Miles et al. [2000] do not state the cloud penetration depth at which the values

were obtained.

8.3 Statistical analysis of aerosol-cloud interactions

This section presents the results of the various statistical analyses about aerosol-cloud rela-

tionships performed in this work. Subsection 8.3.1 investigates the correlation between the

aerosol extinction coefficient and the CDNC. A similar analysis utilizing the cloud droplet



8.3. STATISTICAL ANALYSIS OF AEROSOL-CLOUD INTERACTIONS 99

0.0

0.1

0.2

0.3

0.4

0.5

0.6
penetration depth:

 0 - 30 m
 30 - 70 m
 70 - 120 m

R
el

at
iv

e 
oc

cu
rr

en
ce

Droplet effective radius (µm)
3.9 5.9 8.0 10.0 12.0

penetration depth:
 0 - 30 m
 30 - 70 m
 70 - 120 m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
oc

cu
rr

en
ce

 (km  )Cloud extinction coef. -1
7 14 20 27 33

penetration depth:
 0 - 30 m
 30 - 70 m
 70 - 120 m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
oc

cu
rr

en
ce

0.04 0.10 0.15 0.20 0.26
LWC (g/m3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
oc

cu
rr

en
ce

penetration depth:
 0 - 30 m
 30 - 70 m
 70 - 120 m

60 160 260 350 450
CDNC (cm )-3

(a) (b)

(c) (d)

Figure 8.2: Relative occurrence of obtained (a) cloud extinction coefficients, (b) effective droplet

radii, (c) LWCs, and (d) CDNCs for penetration depths of 0 to 30 m, 30 to 70 m, and 70 to 120 m.
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Figure 8.3: Relative occurrence of (a) cloud base heights, (b) cloud vertical extents, (c) LWPs,

and (d) cloud optical depths of probed clouds.
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Table 8.2: Statistics of derived cloud extinction coefficients, droplet effective radii, LWCs, and

CDNCs.

Penetration Depth 0–30 m 30–70 m 70–120 m

Cloud Minimum (km−1) 2.6 3.9 5.1

Extinction Maximum (km−1) 28.3 36.3 44.4

Coefficient Average (km−1) 11.5 19.4 25.5

Standard deviation (km−1) 5.7 7.0 11.4

Droplet Minimum (µm) 2.7 3.0 2.9

Effective Maximum (µm) 11.0 14.5 13.8

Radius Average (µm) 5.8 9.0 10

Standard deviation (µm) 1.9 3.0 2.6

Minimum (g/m3) 0.010 0.012 0.020

LWC Maximum (g/m3) 0.213 0.243 0.391

Average (g/m3) 0.049 0.124 0.188

Standard deviation (g/m3) 0.041 0.063 0.102

Minimum (cm−3) 10 12 13

CDNC Maximum (cm−3) 460 545 496

Average (cm−3) 112 92 72

Standard deviation (cm−3) 102 110 88

Table 8.3: Statistics of derived cloud base heights, cloud vertical extents, LWPs, and cloud

optical thicknesses.

Cloud Base Cloud Vertical LWP Cloud Optical

Cloud property Height (m) Extent (m) (g/m2) Thickness

Minimum 1100 95 5.4 1.5

Maximum 4400 300 64 5.9

Average 2900 190 19 3.6

Standard deviation 910 50 14 1.3

effective radius to quantify the cloud response to a change in aerosol load is performed in

Subsection 8.3.2. The dependence of aerosol-cloud relationships on the cloud penetration

depth is analyzed in Subsection 8.3.3. The role of the choice of the height range for the

aerosol analysis is assessed in Subsection 8.3.4. All of the mentioned studies use cloud prop-

erties which were derived without consideration of the vertical wind speed. The influence of

the vertical air motion on aerosol-cloud interactions is investigated in Subsection 8.3.5. In

Subsection 8.3.6 the obtained results are utilized to estimate the magnitude of the Twomey

effect over central Europe.
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8.3.1 dependence of CDNC on aerosol extinction coefficient

Figure 8.4 shows derived CDNCs versus aerosol extinction coefficients from 26 dual-FOV

Raman lidar measurements. The height range for the aerosol analysis stretches from 300 to

1000 m below cloud base. The CDNC was obtained in a penetration depth from 30 to 70 m.
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Figure 8.4: CDNC (30 to 70 m above cloud base) versus aerosol particle extinction coefficient

(mean value for the 300 to 1000 m layer below cloud base) for 26 dual-FOV Raman lidar probings.

Information of up- and downdraft periods is not considered. The linear regression of the data

yields ACIN = 0.32± 0.19.

The large variability in the shown data reflects the influence of a multitude of processes

on the cloud microphysical properties as discussed in Subsection 2.2.1 and Section 7.3. Nev-

ertheless, a trend in the displayed data is visible. On average, higher CDNCs are found

for larger aerosol extinction coefficients. This tendency is expressed in an ACIN value of

0.32± 0.19. The relative error is rather high with about 60%. The coefficient of determina-

tion obtained from the linear regression for the calculation of ACIN is low with 0.10.

8.3.2 dependence of cloud droplet size on aerosol extinction coefficient

Figure 8.5 shows the results from 26 dual-FOV Raman lidar probings regarding the corre-

lation between cloud droplet effective radius and aerosol particle extinction coefficient. The
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height ranges where these quantities were derived are the same as for Fig. 8.4. The mea-

surements were sorted according the obtained LWC (cf. Subsection 2.2.3). Throughout the

statistical analyses presented in this section, the LWC grouping was done in such a way that

the ranges of the LWC classes correspond to the ranges of the average errors of the obtained

LWCs. For the analysis presented in this subsection, two LWC classes are sufficient to cover

the dataset. For the classes with the lower and higher LWC, ACIr values of 0.10± 0.17 and

−0.01 ± 0.09, respectively, were obtained. The average of these values yields the resulting

ACIr = 0.04± 0.09. The coefficients of determination from the linear regression of the ACI

calculation are 0.03 and 0.00 for the dataset with the lower and higher LWC, respectively.

Considering the error ranges of ACIN and ACIr, Eq. (2.6) is fulfilled, stating that ACIr is

a third of ACIN.
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Figure 8.5: Cloud droplet effective radius (30 to 70 m above cloud base) versus aerosol particle

extinction coefficient (mean value for the 300 to 1000 m layer below cloud base) without consider-

ation of the vertical wind velocity. The ACIr values of 0.10± 0.17 and −0.01± 0.09 for the lower

and higher LWCs, respectively, yield a mean ACIr value of 0.04± 0.09.
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8.3.3 dependence of aerosol-cloud interactions on cloud penetration depth

In Subsection 2.2.2 it was explained that aerosol-cloud interactions are strongest at cloud base

and diminish with increasing penetration depth due to the effects of other cloud processes.

The magnitude of the decrease of aerosol-cloud correlation is important for the investigation

of the Twomey effect for which integral cloud properties are required (cf. Subsection 2.2.2).

Hence, this subsection deals with the height dependence of the acquired ACI values. An

additional motivation for this work is the evaluation of the dual-FOV Raman lidar technique.

It is checked whether aerosol-cloud interactions may be observed in the lowest 30 m of the

probed clouds as well, despite of possible influences from variations of the cloud base height.

Figure 8.6 presents the datasets for the calculation of the corresponding ACI values for

the cloud penetration depths of 0 to 30 m and 70 to 120 m. As aerosol proxy, again the

mean extinction coefficient for the layer from 300 to 1000 m below cloud base is taken. The

dependence of ACI on penetration depth is summarized in Fig. 8.7. The coefficients of

determination from the derivation of ACIN are compared in Fig. 8.8. The coefficients of

determination for the ACIr retrievals are not shown, because the number of required LWC

groups differs between the penetration depths (cf. Fig. 8.6), which may bias the comparison

of the coefficients.

As expected, ACIN as well as ACIr show a decrease from the penetration depth of 30 to

70 m to 70 to 120 m. This decrease is particularly strong in the case of ACIN. The coefficients

of determination from the linear regression for the ACIN retrieval show a strong decrease

from the penetration depth of 30 to 70 m to 70 to 120 m, too. The CDNC in the height range

of 70 to 120 m above cloud base is not correlated at all with the aerosol extinction coefficient

below cloud base. These findings show that the magnitude of aerosol-cloud interactions

depends on penetration depth and diminishes with increasing distance to cloud base.

The behavior of ACIN and ACIr differs in the lowest 30 m of the investigated clouds.

While ACIN is slightly larger for the 30 to 70 m layer, ACIr is even lower than in the 70 to

120 m layer. In Subsection 8.4 it is argued that more emphasis is to be placed on ACIN than

on ACIr. These findings illustrate that, in principle, the dual-FOV Raman lidar technique

is capable of investigating aerosol-cloud interactions in the lowest 30 m of clouds as well,

although the derived results are subject to larger uncertainties.

8.3.4 Dependence of aerosol-cloud interactions on choice of height range for
aerosol analysis

In Section 7.1 and Subsection 7.3.3, where case studies about aerosol-cloud relationships are

presented, the aerosol particle extinction coefficients were averaged in different height ranges

because of differences in the homogeneity of the investigated aerosol layers. This subsection

examines the impact of the choice of the height range for the aerosol analysis on the derived

ACI values. Therefore, ACI values calculated for three different aerosol analysis height

ranges are compared in Figs. 8.9 and 8.10. Besides the standard height range of 300 to

1000 m below cloud base, used in Section 7.1 and Subsection 8.3.1 to 8.3.3, smaller height
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Figure 8.6: CDNC and cloud droplet effective radius versus aerosol particle extinction coefficient

(mean value for the 300 to 1000 m layer below cloud base) without consideration of the vertical

wind velocity. The cloud properties are shown for the penetration depths of 0 to 30 m (a, b) and

70 to 120 m (c, d). The obtained ACI values are given in the corresponding plots.

ranges of 200 m extent were used to examine whether these layers are more representative for

the aerosol load in the cloud. With a distance of 300 and 400 m, respectively, to cloud base,

these layers consider approximately the upper third of the standard height range (300 to

1000 m). The upper height limit was varied between 300 and 400 m to check for potentially

remaining effects of aerosol growth due to increased humidity in this height.

The ACI values, the corresponding coefficients of determination, and subsequently their

dependencies on penetration depth are similar for all selected aerosol layers, when keeping

the large error bars in mind. The highest coefficients of correlation are obtained for the

aerosol layer 300 to 1000 m below cloud base, especially for the lowest 70 m of the clouds,
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Figure 8.7: (a) ACIN values and (b) ACIr values in dependence of cloud penetration depth

without consideration of the vertical wind speed. The aerosol extinction coefficients were derived

in the 300 to 1000 m layer below cloud base.
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Figure 8.8: Coefficients of determination R2 from linear regression for the ACIN retrieval of the

results displayed in Fig. 8.7. With increasing cloud penetration depth, the correlation between

aerosol extinction and CDNC decreases and is zero for the 70 to 120 m cloud layer.

which are most relevant for aerosol-cloud interactions (cf. Subsection 8.3.3). It appears that

the 300 to 1000 m aerosol layer below cloud base is more representative for the aerosol load in

the cloud. The large vertical extent of 700 m, compared to the 200 m thickness of the other

two layers, leads to a better signal-to-noise ratio and diminishes the influence of aerosol

structures occurring on smaller vertical scales, which are not correlated with the APNC

within the cloud. The analyses employing the aerosol domain of 400 to 600 m below cloud

base do not yield higher coefficients of correlation than the corresponding domain 100 m

closer to cloud base. Hence, the distance of 300 m between the considered aerosol layer and

cloud base seems to be appropriate to avoid effects of the increased humidity below cloud on
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Figure 8.9: (a) ACIN and (b) ACIr for different aerosol-layer height ranges below cloud base

used for averaging the aerosol extinction coefficient. The vertical wind speed was not considered

in the analyses. The corresponding ACI values as well as their height dependence are similar.
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Figure 8.10: Coefficients of determination from linear regression for the ACIN retrieval of the

results displayed in Fig. 8.9. The corresponding coefficients as well as their height dependence are

similar. The highest correlation between subcloud aerosol extinction and CDNC is obtained when

aerosol extinction values for the 300 to 1000 m layer are used.

the statistics. In conclusion, the choice of the aerosol domain of 300 to 1000 m below cloud

base is most suitable for studies of aerosol-cloud interactions.

8.3.5 Influence of the vertical wind velocity on aerosol-cloud interactions

Several examples showing the strong influence of the vertical air motion on cloud properties

in general and on aerosol-cloud interactions in particular were given in Section 7.3. This

subsection investigates the magnitude of aerosol-cloud relationships in dependence of the

vertical wind speed on a statistical basis. 13 cases of combined dual-FOV Raman lidar

and Doppler wind lidar observations were used for the calculation of ACI values for cloud
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updraft regions. The approach explained in Section 7.3 was pursued. The results are shown

in Fig. 8.11 and 8.12. However, reasonable ACI values for cloud mean properties (i.e.,

considering up- and downdraft periods) could not be derived from this dataset because of

its reduced extent. Hence, for the comparison of the updraft-dominated cloud regimes with

cloud mean properties, the ACI values presented in the previous subsections are used.

Without exception, all ACI values are larger when cloud periods are considered during

which the wind lidar indicated a positive vertical wind velocity. This finding points to an

enhancement of arosol-cloud interactions due to the increased flow of CCN into clouds during

updraft periods. The largest differences betweenACIN values occur in the penetration depths

of 30 to 70 m and 70 to 120 m.

In the cloud layer from 30 to 70 m above cloud base, the ACIN value for updraft regions

is 0.77 ± 0.36 and thus a factor of two larger than the corresponding ACIN value derived

without consideration of the vertical wind velocity. The good correlation between the aerosol

proxy and CDNC during updraft periods is corroborated by Fig. 8.12. The corresponding

coefficient of determination reaches almost a value of 0.3, which is about a factor of three

larger than the value derived without consideration of the vertical wind velocity.

For the updraft periods, ACIN is lower in the lowest 30 m above cloud base compared

to the values for the 30 to 70 m cloud layer. This finding seems to be in contradiction with

the argumentation given in Subsection 2.2.2 and the findings presented in Subsection 8.3.3,

which state that aerosol-cloud interactions are most pronounced at cloud base. Furthermore,

the corresponding coefficient of determination is lower for the lowest 30 m of the cloud than

for the 30 to 70 m layer. Obviously, the results in the lowest 30 m of the clouds are affected by

retrieval inaccuracies at the cloud base due to variations of the cloud base height as discussed

in Subsections 6.2.1 and 6.2.4. From the trend that ACIN decreases with increasing cloud
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Figure 8.11: (a) ACIN and (b) ACIr considering updraft periods only (red, 13 cases) and

ignoring vertical wind information in the ACI retrieval (green, 26 cases). For the aerosol analysis

the layer from 300 to 1000 m below cloud base is used.
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Figure 8.12: Coefficients of determination from linear regression for the ACIN retrieval with

(red) and without consideration of the vertical wind speed (green). For all investigated penetration

depths, aerosol extinction below cloud and CDNC are more correlated when considering updraft

periods only.

penetration depth and the ACIN from the 30 to 70 m cloud layer, ACIN = 0.80 ± 0.40 can

be estimated for cloud updraft regions in the lowermost 70 m above cloud base.

Comparably high ACI values were obtained for updraft regions in the 70 to 120 m cloud

layer. This finding may indicate that updrafts are well-organized air parcels that are less

affected by entrainment and turbulent mixing, which blur the effects of aerosol-cloud inter-

actions.

It is remarkable that the relative errors of the ACI values derived for cloud updraft

regions and cloud mean properties are similar, despite of the significantly larger dataset for

the analyses of cloud mean properties. In the lowest 70 m of the clouds, the relative errors

of the ACIr values for updrafts and cloud mean properties are 0.60 and 0.57, respectively.

The explanation for this finding is the stronger correlation of aerosol and cloud properties in

cloud updraft regions (cf. Fig. 8.12).

8.3.6 Twomey effect

In this subsection an attempt is made to estimate the impact of aerosol-cloud interaction

on the resulting change in cloud albedo, i.e., the Twomey effect. In Subsection 2.2.4 two

approaches were introduced to assess the change of cloud albedo with changing aerosol

load. The approach utilizing Eq. (2.12) relies on accurately retrieved cloud optical depths.

However, dual-FOV Raman lidar observations assess cloud properties merely up to an optical

penetration depth of about 3 (cf. Subsection 5.2.4). To avoid a possible bias by omitting

thicker clouds or by considering erroneous optical depth estimates for thicker clouds, another

approach is followed.
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Equation (2.11) is applied and the ACIN values derived in Section 8.3.3, without con-

sideration of the vertical wind speed (cf. Subsection 2.2.2), are used. As no aerosol-cloud

interactions were observed in the penetration depth of 70 to 120 m, we assume that only the

lowest 70 m of a cloud are influenced by aerosol-cloud interactions. In this height range an

ACIN of 0.35± 0.19 was derived (cf. Subsection 8.3.3).

Furthermore, it is assumed that the contribution of a cloud parcel to the cloud albedo is

independent of its position relative to cloud top and cloud base. As comparably thin clouds

with an average optical thickness of 3.6 are considered here (cf. Table 8.3), this assumption

is reasonable [Lacis and Hansen, 1974; Bohren, 1987; King , 1987]. Thus, the overall mean

(i.e., total) ACItot
N derived from ACIN for the lowermost 70 m of the clouds and the cloud

vertical extent can be applied for the estimation of the Twomey effect. In this calculation,

the average cloud vertical extent of 190 m (cf. Subsection 8.2.2) is applied. With the use of

the average cloud vertical extent (instead of the individual cloud geometrical thicknesses),

possible effects of the aerosol on the cloud vertical extent, which influence the cloud albedo

as well [Pincus and Baker , 1994], are avoided. The derived overall mean ACItot
N is 0.13±0.07

(for ACIN = 0.35 ± 0.19 in 0 to 70 m penetration depth and ACIN = 0.00 ± 0.00 in 70 to

190 m).

To solve Eq. (2.11), the relative cloud susceptibility over central Germany derived from

Oreopoulos and Platnick [2008] is used. It is scaled with the average LWC of the cloud height

range where aerosol-cloud interactions take place (lowermost 70 m) as described by Oreopou-

los and Platnick [2008] (cf. Subsection 2.2.4). This average LWC is 0.085±0.083 g/m3, which

leads to a relative susceptibility of the probed clouds of 0.17± 0.17.

Together with the derived ACItot
N , this yields an estimate of the magnitude of the Twomey

effect on layered, thin water clouds over Leipzig, Germany of CAE = 0.023 ± 0.026. This

result is used to calculate the Twomey-effect-related radiative forcing for an increase of the

APNC by 30%, which is assumed to be the anthropogenic fraction on the global aerosol load,

following Sekiguchi et al. [2003] and references therein. This radiative forcing is determined

to (−2.8 ± 3.2) W/m2 with an assumed daily mean incoming solar radiation of 400 W/m2

[Petty , 2006]. However, this radiative forcing corresponds to a situation with complete cloud

coverage. To estimate the corresponding annual mean radiative forcing over Germany, the

annual mean amount of clouds which are susceptible to the Twomey effect is required. These

clouds are presumed to be ice-free clouds as ice-containing clouds are influenced by a number

of other cloud processes which diminish the impact of the Twomey effect. Here, for a simple,

rough estmimation, these clouds are assumed to be low clouds, i.e., clouds occurring below

700 hPa, which corresponds to an altitude of about 3000 m. With an annual mean cloud

fraction of about 50% of low clouds over Leipzig [Xu and Cheng , 2013], the annual mean

radiative forcing due to the Twomey effect caused by anthropogenic aerosol is estimated

to (−1.4 ± 1.6) W/m2 over central Germany. Table 8.4 summarizes the values used for the

approach to derive this estimation.
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Table 8.4: Obtained and assumed values for the estimation of the anthropogenic radiative forcing

due to the Twomey effect over central Germany. Besides ACItot
N , SR, and CAE, the assumed

fraction of anthropogenic aerosol on the global total aerosol load, the annual mean cover of clouds

susceptible to the Twomey effect over Leipzig, and the resulting anthropogenic radiative forcing

are given.

ACItot
N 0.13± 0.07

SR 0.17± 0.17

CAE 0.023± 0.026

Anthropogenic aerosol fraction 0.3

Cloud fraction 0.5

Anthropogenic radiative forcing (−1.4± 1.6) W/m2

8.4 Discussion and conclusions

For the statistical investigation of aerosol-cloud interactions, thin layered clouds were probed

over Leipzig, Germany. Their microphysical properties were examined regarding correlations

with the aerosol particle extinction coefficient, representing the aerosol load below the cloud.

29 cloud probings were analyzed in total, among this 13 cases with parallel measurements of

the vertical wind speed. 26 measurements were analyzed without consideration of the vertical

wind speed. The results of the corresponding analyses are summarized and discussed here.

The height range which is most suitable for analyses of aerosol properties for the char-

acterization of the aerosol load within the cloud proved to be the layer from 300 to 1000 m

below cloud base. For the quantification of aerosol-cloud relationships the ACIN value had

advantages over ACIr despite the higher accuracy of the retrieved cloud droplet size com-

pared to the CDNC (cf. Subsection 6.2.4). The basic advantage comes with the fact that the

measurements do not need to be grouped according to LWC. The resulting larger datasets are

important for investigations of such complex issues. Some analyses employing ACIr showed

opposite behaviors for different LWC classes, i.e., a decrease of droplet size with increasing

aerosol load for one class and and an increase for another (e.g., Fig. 8.6). This behavior of

ACIr contradicts the impact of aerosol-cloud interactions related to the Twomey effect. The

explanation for this finding is that the corresponding datasets are too small for the performed

investigations. An alternative explanation relating this findung to other aerosol-cloud inter-

actions which cause this effect is discarded because the setting is considerably influenced

from aerosol-cloud interactions related to the Twomey effect. This strong influence is de-

duced from the comparably high ACIN values (e.g., Fig. 8.6(a) and (b)). Nevertheless, most

studies presented in the previous subsections revealed similar behaviors of ACIN and ACIr.

The importance of the extent of the dataset was also highlighted in Subsection 8.3.5, where

a dataset with only 13 measurements could not be employed for analyses as in the previous

subsections.
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Significantly stronger aerosol-cloud interactions were found in updraft regions of clouds,

which highlights the importance of the vertical wind velocity for aerosol-cloud interactions.

The corresponding ACI values derived close to cloud base characterize the microphysical

processes of aerosol-cloud interactions and thus follow objective A, explained in Subsec-

tion 2.2.2. ACIN = 0.80 ± 0.40 was derived in the lowest 70 m of clouds probed during

updraft time periods. This result corresponds to ACIr = 0.27 ± 0.13 (cf. Eq. (2.6)), which

is compared in the following with results of corresponding airborne in-situ measurements

(cf. Table 2.1). Most values match well, i.e., the values obtained by Martin et al. [1994],

Gultepe et al. [1996], O’Dowd et al. [1999], Ramanathan et al. [2001], Twohy et al. [2005],

Zheng et al. [2011], and Painemal and Zuidema [2013]. However, most studies tend to slighty

lower values. Furthermore, it has to be mentioned that the cited studies predominantly used

probings of marine stratocumuli. ACI values may be higher over oceans than over land,

although this issue is currently not well understood. Lu et al. [2008] derived ACIr = 0.14 for

continental airmasses, whereas an investigation employing the same aircraft with a similar

instrumentation yielded ACIr = 0.19 for measurements of marine stratocumuli [Lu et al.,

2007]. In summary, the derived ACIr is in good agreement with the investigations cited in

Table 2.1.

For the first time, the dependence of aerosol-cloud relationships on cloud penetration

depth was investigated. In cloud updraft regions, aerosol-cloud interactions were observed

throughout the whole probed height range, whereas aerosol-cloud interactions are restricted

to the lowermost 70 m of the clouds in the analyses without consideration of the vertical air

motion.

With the height dependence of aerosol-cloud relationships, a cloud vertical mean ACIN

of 0.13 ± 0.07 was derived, which leads to ACIr = 0.043 ± 0.023. This result is assigned

to objective B (cf. Subsection 2.2.2) because the cloud vertical mean properties determine

the cloud albedo for the observed thin clouds [Lacis and Hansen, 1974; Bohren, 1987; King ,

1987] and thus their radiative effect. The result is compared with findings from satellite

investigations, which pursue the same objective. The majority of the values given in Ta-

ble 2.1 matches to the derived result. However, a trend to slightly stronger aerosol-cloud

relationships becomes clear. One reason for this difference might be that the majority of the

cited satellite investigations consider solely marine clouds, which show an increased Twomey

effect [Quaas et al., 2008; Bellouin et al., 2013].

The derived ACI values related to objective A and B differ by almost one order of mag-

nitude. This difference emphasizes the relevance of a clear objective for the conduction of

investigations of aerosol-cloud interactions and the importance of the appropriate compre-

hension of the obtained results.

The magnitude of the Twomey effect on thin, layered clouds over Leipzig, Germany,

was estimated to CAE = 0.023± 0.026. This result is reasonable as Painemal and Zuidema

[2013] derived a CAE value of about 0.04 to 0.095 for marine stratocumuli over the Southeast

Pacific, where ACI values [Quaas et al., 2008; Bellouin et al., 2013] as well as cloud relative

susceptibilities [Oreopoulos and Platnick , 2008] are larger than over Europe.
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With the derived results, the anthropogenic radiative forcing over central Germany due to

the Twomey effect was estimated to approximately (−1.4± 1.6) W/m2. This value matches

with the results of the IPCC report 2007, where a radiative forcing of −0.7 W/m2 within the

error range of [−0.3, −1.8] W/m2 was derived [Forster et al., 2007]. However, it should be

added that more recent studies tend to derive weaker radiative forcings (e.g., −0.2±0.1 W/m2

[Quaas et al., 2008] and −0.6 ± 0.4 W/m2 [Bellouin et al., 2013]), which fit still reasonably

well to the derived result, considering the various assumptions and simplifications in the

applied approach.
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Chapter 9

Summary

For the first time, the novel dual-FOV Raman lidar technique was implemented and used

for investigations of aerosol-cloud interactions in ice-free clouds. With this ground-based

remote-sensing method, profiles of several cloud properties can be determined. The dual-

FOV technique was installed in the Raman lidar MARTHA, which is operated at TROPOS

in Leipzig. Thus, together with the capabilities of conventional multiwavelength Raman

lidar methods for high-quality analyses of aerosol properties, MARTHA became a unique

instrument for quantitative investigations of aerosol-cloud interactions.

Dual-FOV lidar measurements rely on the simultaneous detection of backscattered light

with two FOVs to assess the angular distribution of the forward scattering by cloud droplets.

The isotropic molecular Raman backscattering simplifies the data analysis significantly. On

the contrary, the small scattering cross sections of Raman scattering events restrict the

application of this technique to night time.

With dual-FOV cloud probings, profiles of the extinction coefficient, droplet effective

radius, LWC, and CDNC of water clouds can be derived by means of a forward iterative

algorithm. An error analyses of the retrieval was presented in the scope of this work. The

mentioned cloud properties can be derived up to a geometrical and optical penetration depth

of about 150 m and 3, respectively. The temporal resolution of the corresponding measure-

ments is about 3 minutes. The relative errors of the retrieved extinction coefficient and

effective radius are about 20% to 25%. The uncertainty of the derived LWC is approxi-

mately 30%, whereas the relative error of the CDNC is comparably high with about 60%.

The cloud base height can be determined with dual-FOV lidar measurements with high

accuracy. Ambiguities which are caused by aerosol growth due to increased humidity severely

affect conventional lidar retrievals of the cloud base height. Here, the higher accuracy of the

dual-FOV lidar approach has been demonstrated with simulations and measurements.

Within the scope of this work, aerosol-cloud interactions were investigated with dual-FOV

Raman lidar measurements. For this purpose, 29 dual-FOV Raman lidar probings of layered,

thin clouds were analyzed regarding aerosol and cloud properties. The cloud probings were

performed between September 2010 and August 2012.
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Several case studies were discussed. The importance to assess profile information of cloud

microphysical properties for investigations of aerosol-cloud interactions was highlighted. Fur-

thermore, it was found by means of additional Doppler wind lidar measurements that the

vertical wind velocity has a large influence on cloud properties and thus aerosol-cloud inter-

actions as well.

The statistical analyses of the performed dual-FOV Raman lidar probings showed a trend

of cloud droplet size and CDNC with respect to the aerosol load below cloud base. In accor-

dance with aerosol-cloud interactions related to the Twomey effect, the cloud droplet effective

radius decreased and CDNC increased with increasing aerosol particle extinction coefficient

below cloud base. Moderate coefficients of determination of 0.1 to 0.3 were obtained.

For the first time, the dependence of aerosol-cloud relationships on cloud penetration

depth was investigated. The correlation between aerosol and cloud properties was found to

be restricted to the lowermost 70 m of the probed clouds. ACIN values (quantifiying aerosol-

cloud relationships with regard to CDNC) of 0.38±0.20 and 0.32±0.19 were derived for the

height ranges of 0 to 30 m and 30 to 70 m above cloud base, respectively. Furthermore, the

effect of the vertical wind velocity on aerosol-cloud relationships was assessed. Throughout

the complete analyzed height range within the clouds (0 to 120 m above cloud base), stronger

aerosol-cloud relationships were obtained for updraft regions than for cloud regions where

up- and downdrafts prevail. For a cloud penetration depth between 30 and 70 m, ACIN =

0.77 ± 0.36 was obtained, which is about a factor of two larger than the ACIN for cloud

mean properties.

From the results of these analyses, conclusions were drawn in regard to two different

objectives for the investigation of aerosol-cloud interactions (cf. Subsection 2.2.2). For

objective A, the investigation of the microphysical processes of aerosol-cloud interactions,

ACIN = 0.80 ± 0.40 was obtained for cloud updraft regions in the lowermost 70 m of the

clouds. This result is in agreement with the findings of airborne in-situ studies (cf. Table 2.1),

which follow objective A as well. In pursuit of objective B, the quantification of aerosol-cloud

interactions with respect to the clouds’ radiative effect, ACIN = 0.13±0.07 was derived. For

this calculation, cloud properties were averaged over the cloud vertical extent and vertical

wind velocities were not considered. The results match to the findings of studies employing

satellite measurements (cf. Table 2.1), which follow objective B. For the first time, results

related to both objective A and B were derived with the same measurement technique. The

large difference between the corresponding ACIN values illustrates the high importance to

distinguish between these objectives.

Finally, the derived results were used for an estimate of the anthropogenic radiative

forcing over central Germany due to the Twomey effect. The result of (−1.4 ± 1.6) W/m2

matches with the results of the IPCC report 2007 [Forster et al., 2007].

In conclusion, a new measurement technique was introduced, which proved to be very

suitable for investigations of aerosol-cloud interactions. The performed studies yielded new

insights into aerosol-cloud interactions, which are highly required for an adequate under-

standing of the earth’s climate system.
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MARTHA Multiwaveength Atmospheric Raman lidar for Temperature, Humidity,

and Aerosol profiling

MODIS MODerate Resolution Imaging Spectroradiometer

MPLNET Micro Pulse Lidar Network

MWR Microwave Radiometer

NCEP National Center for Environmental Prediction

PMT Photomultiplier Tube

Radar Radio Detection and Ranging

SAEMS Spectral Aerosol Extinction Monitoring System

TROPOS Leibniz Institute for Tropospheric Research

UTC Universal Time Coordinated

VOCALS-REx VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experimemt

WiLi Wind Lidar
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