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Referat:

Im Rahmen der vorliegenden Arbeit wurden die Eigenschaften von atmosphärischen

Aerosolpartikeln im tropischen Regenwald des Amazonasgebietes bestimmt. Dazu wur-

den die Daten einer fast einjährigen Lidarmesskampagne ausgewertet und diskutiert.

Die Messungen wurden mit einem automatischen Mehrwellenlängen-Polarisations-

Raman-Lidar im zentralen Amazonasbecken nahe Manaus, Brasilien, im Zeitraum

von Januar bis November 2008 durchgeführt. Somit konnten erstmalig optische und

mikrophysikalische Aerosoleigenschaften im Amazonasgebiet während der Regenzeit

(ca. Dezember–Mai) und Trockenzeit (ca. Juni–November) höhenaufgelöst charakteri-

siert werden.

Einleitend werden die meteorologischen Bedingungen im Amazonasgebiet erläutert und

eine Literaturübersicht über Aerosolforschung in dieser Region gegeben. Das Messgerät

sowie verschiedene Kalibrier- und Korrekturschemen, die zur Datenauswertung not-

wendig sind, werden vorgestellt. Auch Vergleiche mit anderen Messgeräten werden dis-

kutiert. Diese zeigen, dass die aus den Lidarmessungen abgeleiteten Parameter von ho-

her Qualität sind. Anhand von Fallstudien werden mit Hilfe von Rückwärtstrajektorien

und Satellitenmessungen typische Aerosolbedingungen am Messstandort diskutiert.

Um die generellen Unterschiede zwischen Regen- und Trockenzeit zu quantifizieren,

wird eine statistische Auswertung aller analysierten Lidarmessungen präsentiert.

Die Analyse der Lidardaten zeigt, dass während der Regenzeit im Amazonasgebiet

in ca. der Hälfte aller Fälle sehr saubere Bedingungen mit einer Aerosol Optischen

Dicke (AOD) von weniger als 0.05 (bei 532 nm) vorherrschen können. Allerdings wur-

de in ca. 30% aller analysierten Fälle im Zeitraum von Januar bis Mai auch afrika-

nisches Aerosol, vornehmlich Saharastaub und Biomasseverbrennungsaerosol (BBA),

am Messstandort detektiert. Dabei dominierte meist BBA die Aerosolpopulation, wie

die Depolarisationsmessungen zeigten. In der Trockenzeit ist die Atmosphäre im Ama-

zonasbecken hauptsächlich mit BBA aus Südamerika belastet. Daher ist die AOD im

Durchschnitt um einen Faktor drei größer als in der Regenzeit. BBA wurde zu die-

ser Jahreszeit regelmäßig bis zu einer Höhe von 4–6 km detektiert. Basierend auf den

vorgestellten Langzeitmessungen werden erstmalig die optischen Eigenschaften von

südamerikanischem BBA statistisch analysiert und diskutiert.
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Chapter 1

Introduction

The Amazon Basin is the largest hydrological basin in the world draining an area as

large as 6,900,000 square kilometers (Barthem et al., 2004). It contains the largest

extent of tropical rain forest on Earth – the Amazon rain forest. The tropical rain

forest covers more than 5,000,000 square kilometers (Nobre et al., 2004) and thus an

area half as large as Europe or rather one third of South America. The Amazon rain

forest represents over half of the planets remaining tropical rain forests (UNEP , 2008).

Because of its size and its pronounced hydrological cycle, the Amazon Basin is a key

region for the global climate (heat pump, water work, major carbon dioxide sink).

However, Amazonia is under pressure. Not only global warming disturbs this unique

ecosystem, but it also suffers dramatically from deforestation. Each year thousands

of square kilometers of tropical rain forest are burned to acquire new farming land.

About 15% of the original forest area were already lost in 2003 (Soares-Filho et al.,

2006). Nepstad et al. (2008) even estimated that 55% of the forest area will be dam-

aged or cut down by 2030, if present global climate change and deforestation trends

continue. The strong linkage between the terrestrial ecosystem and the hydrological

cycle makes the Amazon Basin very vulnerable to land-use changes. Soares-Filho et al.

(2006) stated that more than 70% of the original forest area are needed to maintain the

forest-dependent rain-fall regime. As a consequence, Amazonia could reach a tipping

point at which the rain forest dies back and vegetation changes to Savanna (Lenton

et al., 2008). Once the rain forest is gone, local climate will change significantly and

irreversibly and this in turn will also affect the global climate.

The deforestation fires in Amazonia significantly influence the global climate already

today. Because the Amazon rain forest stores a lot of carbon, huge amounts of car-

bon dioxide are emitted during these fires. On a global scale, deforestation fires alone
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account for 19% of the global carbon dioxide emissions (Bowman et al., 2009). Beside

carbon dioxide, huge amounts of aerosol are emitted into the atmosphere by the veg-

etation fires. These aerosol particles can be carried over long distances and influence

cloud microphysics and atmospheric radiative transfer on a regional and hemispheric

scale.

The effects of aerosol on global climate have been discussed for several decades and

generally one distinguishes between the aerosol direct and indirect effects (e.g., IPCC ,

2007). The aerosol direct effect describes the influence of aerosols on the Earth’s ra-

diation balance by scattering and absorption of shortwave and longwave radiation.

Changes in the thermodynamical stability of the atmosphere due to light-absorption

of aerosols are denoted as the semi-direct aerosol effect. The aerosol indirect effect

describes the influence of aerosol on clouds. The potential of aerosol to change the

cloud droplet concentration and cloud droplet size, and thus the cloud radiative prop-

erties, is called the first indirect aerosol effect. The second indirect effect describes the

change of the amount and the lifetime of clouds by aerosol particles acting as cloud

condensation nuclei (CCN).

However, the quantification of these effects is subject to the highest uncertainties

in future climate predictions (IPCC , 2007). One reason for the uncertainties is the

high horizontal and vertical inhomogeneity of the optical and microphysical aerosol

properties. A good knowledge of the aerosol conditions (aerosol type, vertical aerosol

structure, horizontal distribution etc.) is thus a prerequisite for a reliable estimation

of the aerosol effects in the climate system.

From field campaigns during the last three decades (e.g., Martin et al., 2010a), it was

deduced that Amazonia is at times very clean and free of anthropogenic influences

in the wet season, while during the dry season smoke from vegetation fires heavily

influences the atmospheric conditions. Pöschl et al. (2010) even state that aerosol

conditions in Amazonia’s wet season “approach to those of the pristine pre-industrial

era”. Because of this strong contrast between the wet and the dry season, the Amazon

Basin is considered to be favorable to study the direct and indirect aerosol effect on

climate.

Aerosol research in Amazonia was predominantly performed during the dry season

with the focus on biomass-burning aerosol (BBA, e.g., Kaufman et al., 1992; Ward

et al., 1992; Kaufman et al., 1998a; Andreae et al., 2004). During several field cam-

paigns microphysical and optical properties of smoke aerosol were investigated mainly

at ground with in-situ instrumentation (e.g., Artaxo et al., 1994, 2002; Guyon et al.,
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2003) and by means of a few airborne measurements (e.g., Reid et al., 1998; Reid and

Hobbs , 1998; Chand et al., 2006). Based on such measurements of BBA, estimations of

the direct aerosol effect were made (Ross et al., 1998) and hypotheses were formulated

concerning the aerosol semi-direct (Koren et al., 2004) and indirect effect (Reid et al.,

1999; Williams et al., 2002; Andreae et al., 2004; Koren et al., 2004, 2008; Rosenfeld

et al., 2008). However, most of these campaigns were performed in the direct vicinity

of the vegetation fires and thus may not be representative for the entire Amazon Basin.

Aerosol research in the wet season was less frequent and focused on natural aerosol

from the rain forest. Biogenic aerosol (primary organic and secondary organic aerosol)

from the forest was identified as the dominant aerosol species during that season (Ar-

taxo et al., 1988; Martin et al., 2010b). Because the concentration of aerosol under

such conditions is very low and comparable to marine background conditions (Roberts

et al., 2001), the Amazon Basin is denoted as green ocean (Andreae et al., 2004) during

the wet season. As a consequence of the low natural aerosol concentrations, the im-

pact of anthropogenic aerosol on rainfall production (aerosol indirect effect) may have

a greater importance in the Amazon Basin than in other continental regimes (Roberts

et al., 2001; Artaxo et al., 1990). Events of Saharan dust advection occasionally take

place during the wet season and can significantly change the atmospheric aerosol con-

ditions over the Amazon rain forest during that time (Talbot et al., 1990; Swap et al.,

1992; Formenti et al., 2001). Reichholf (1986) and Bristow et al. (2010) showed the

need for Saharan dust intrusions into the Amazon Basin to maintain nutrient balance

in Amazonian soils. Without this transport of nutrients from Africa, the growth of the

Amazon rain forest would be limited. Beside Saharan dust, also BBA from African

fires reaches the Amazon Basin as was first pointed out by Kaufman et al. (2005).

Before this study, the transport of African smoke towards Amazonia was not recog-

nized, and the potential of BBA to act as nutrient for the Amazon rain forest was not

yet considered. Also the impact of such aerosol on weather and climate in Amazonia

remained unknown because no information on the vertical aerosol distribution existed.

For instance, Remer (2009) pointed out that BBA located above clouds has a signif-

icant heating effect on the atmosphere. Hence, the knowledge of the vertical aerosol

structure, and thus the information if aerosol is above or below a potential cloud layer,

is essential to estimate the aerosol effects on climate. Consequently, there is a clear

need for more, especially height-resolved, aerosol observations in the Amazon Basin.

However, measurements in this large, inaccessible area are difficult. Neither long-term

in-situ measurements of the aerosol conditions nor continuous measurements of the
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vertical aerosol structure have been performed so far. Measurements with ground-

based and satellite passive remote-sensing instruments suffer from the high fractional

cloud cover which usually exists during daytime in the Amazon Basin and are unable

to resolve the layering of the aerosol as a function of height. Thus, most of the effects

of Amazonian natural and anthropogenic aerosol on climate (direct and indirect effect)

as previously discussed (e.g., Ross et al., 1998; Reid et al., 1998; Koren et al., 2004;

Andreae et al., 2004; Oliveira et al., 2007; Prenni et al., 2009) were based on a few

short, snapshot-like aerosol measurements and are not representative on a regional or

even global scale.

To account for the role of the Amazon rain forest in the Earth’s climate system, the

following key questions with respect to aerosol need to be answered:

� How frequently do clean aerosol condition, i.e., free of anthropogenic influences,

prevail? What are the aerosol characteristics (e.g., aerosol optical depth) of these

natural aerosol conditions?

� What aerosol species do occur in the Amazon Basin throughout the year?

� How often does advection of Saharan dust and/or African BBA occur in the

Amazon Basin and how much do these species contribute to the total aerosol

load?

� How dominant is BBA from South American vegetation fires in entire Amazonia?

� What are the height-resolved optical and microphysical aerosol properties under

ambient conditions during both the dry and the wet season?

� How is the vertical distribution of the aerosol? Are passive remote sensing and

ground-based in-situ measurements sufficient for investigating the direct and

indirect aerosol effect in Amazonia?

To address these questions, it is essential to perform long-term measurements in Ama-

zonia gathering also information on the vertical aerosol distribution. Lidar is an appro-

priate tool to monitor the vertical aerosol structure. A lidar is an active remote-sensing

instrument that makes use of the effects of atmospheric (molecular and particle) scat-

tering and extinction of light to gain information on the state and composition of the

atmosphere. Lidar is the acronym for light detection and ranging. The emission and

detection of light at different wavelengths and information on the polarization state of

the scattered light allows one to derive vertically resolved optical and microphysical

aerosol properties and to differentiate aerosol species. High clouds, which disturb pas-
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sive aerosol observations (e.g., with sun photometer and MODIS1), do not hinder the

lidar measurements, and aerosol information below the clouds are usually obtainable.

Recent developments of small, compact lidars (e.g., Althausen et al., 2009) make it

possible to perform unattended, automatic lidar measurements at even remote loca-

tions. Consequently, long-term measurements of the vertical aerosol structure are now

possible.

For the first time in Amazonia, continuous measurements of the vertical aerosol struc-

ture were carried out in the framework of EUCAARI (European Integrated Project

on Aerosol, Cloud, Climate, Air Quality Interactions, Kulmala et al., 2009, 2011)

and AMAZE–08 (Amazonian Aerosol Characterization Experiment, Martin et al.,

2010b). The measurements were performed with the automated multiwavelength-

Raman-polarization lidar PollyXT (Althausen et al., 2009) of the Leibniz Institute for

Tropospheric Research (IfT), Leipzig, Germany. Lidar measurements were conducted

from January to November 2008 near Manaus, Brazil, in the central northern part of

the Amazon Basin. Pristine tropical rain forest covers the area around the lidar site for

several hundred kilometers (except Manaus metropolitan area). In this dissertation,

these lidar measurements are intensively discussed in terms of instrumentation, data

analysis, and observed aerosol properties.

After the introduction, Chapter 2 gives an overview of the meteorological conditions

and the fire activity in the Amazon Basin. Furthermore, a review concerning the

knowledge on aerosols in Amazonia gathered from research activities before 2008 is

given. In Chapter 3, the lidar experiment in Amazonia is described. The field site and

the lidar PollyXT are introduced. In Chapter 4, the lidar principle and the analysis

methods to determine aerosol characteristics are outlined. Because PollyXT was newly

developed for the EUCAARI project, characterization and quality-assurance tests for

the lidar are presented in Chapter 5. These tests and the corresponding corrections

were essential to obtain high-quality aerosol information. The results of the long-term

lidar observations in the Amazon rain forest covering the wet and the dry season of

2008 are presented in two chapters. In Chapter 6, several case studies are discussed,

while in Chapter 7 the statistical analysis of the aerosol characteristics in the different

seasons is presented. A summary and concluding remarks are given in Chapter 8.

1Moderate Resolution Imaging Spectroradiometer
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Chapter 2

Amazon rain forest: Meteorological

conditions, fire activity, and

previous aerosol research

In this Chapter, the general weather conditions in the region of the lidar measurements

are discussed. A brief description of the vertical transport processes in the Amazon

Basin and an introduction into the topic of biomass burning in the Amazon rain

forest are given. Finally, an overview of knowledge on aerosol conditions in Amazonia

gathered from previous field campaigns is presented.

2.1 Amazonian weather conditions

In general, the hot and humid climate in Amazonia is controlled by the migration

of the Intertropical Convergence Zone (ITCZ) and thus by the trade-wind (Hadley)

circulation. But also the El Niño/La Niña Southern Oscillation (Rasmusson and Wal-

lace, 1983) affects the Amazonian climate (e.g., rainfall patterns, Nobre et al., 2004).

Figure 2.1 shows the global position of the ITCZ in January and July based on a

climatological average (Lutgens and Tarbuck , 2010). In contrast to Africa and Asia,

the inter-annual migration of the ITCZ is rather limited. As a consequence, two dry

and two wet seasons occur in tropical Africa, while only one dry and one wet season

appear in South America. In addition to the location of the ITCZ, the evolution of the

Bolivian High Pressure System has a significant effect on the meteorological conditions

in the west and south of Amazonia (Procopio et al., 2003).

Typical for tropical climate in lowlands, mean temperatures have no significant annual
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Lidar

Lidar

Figure 2.1: Global climatological conditions in January (wet season in Amazonia) and

July (dry season). Mean values of the sea-surface-level pressure and the resulting wind

fields are shown (Lutgens and Tarbuck , 2010). The thick purple line indicates the location

of the ITCZ during the different seasons. The lidar field site is indicated by a yellow star.
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cycle and are above 25 ◦C throughout the year. The wet season is characterized by

heavy and long-lasting rain falls. In the dry season, precipitation is less and mainly

caused by singular convective systems. The daily maximum surface temperatures are

usually higher in the dry season than in the wet season. Due to the local surface forc-

ings, the maximum of the mainly convectively driven precipitation in both seasons is

observed in the afternoon and during the night (Araújo et al., 2002). However, caused

by the evolution of a river-and-land-breeze circulation, meteorological conditions can

differ significantly from inland conditions near big rivers (Oliveira and Fitzjarrald ,

1993). Due to its large size and the migration of the ITCZ, the dry season begins in

different months in Amazonia (Procopio et al., 2003). Depending on the region, the

dry season peaks between August and November in most parts of the Amazon Basin.

During this time, a high anthropogenic fire activity usually occurs (see Sec. 2.2).

The climate chart1 for Manaus (3◦ 08’ S, 60◦ 0.1’ W), which is located about 60 km

south of the lidar field site in the central northern part of the Amazon Basin, is shown

in Fig. 2.2. The wet season in Manaus usually covers the months from December to

May with monthly precipitation rates of 230–300 mm. The dry season begins end

of June and lasts until November. Average monthly precipitation rates in Manaus

are between 50 and 120 mm during this time. Monthly mean temperatures vary only

slightly throughout the year. The day-night amplitude is largest (almost 10 ◦C) dur-

ing the dry season. Usually, minimum temperatures are not below 23 ◦C. Dominant

wind directions (not shown) in Manaus are north-east (wet season) to south-east (dry

season) due to the trade-wind circulation.

1The data was originally gathered for the World Meteorological Organization (WMO), then

processed by the National Climatic Data Center (NCDC), and finally provided by the National

Oceanic and Atmospheric Administration (NOAA) via NOAA Global Climate Normals 1961-1990.

Source: http://www.climate-charts.com
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Figure 2.2: Monthly mean temperatures and precipitation rates for Manaus (3◦ 08’ S,

60◦ 0.1’ W at 72 m asl, Station: BZ83331).

2.2 Fire activity in Amazonia

A high anthropogenic fire activity is observed during the dry season in Amazonia

(Andreae, 1991). As a consequence, large amounts of smoke are emitted into the

atmosphere. According to Longo et al. (2009), the anthropogenic vegetation fires can

be divided into three major fire types:

� primary deforestation fires: for new pasture or agriculture land,

� pasture maintenance fires: the most common type (every 2–3 years),

� savanna (cerrado) fires: burned to improve grazing (every 1–3 years).

Most fires in forested regions in Amazonia occur along rivers and near recently con-

structed roads and settlements (Prins et al., 1998). The fire activity in Amazonia

has a strong diurnal cycle and peaks in the middle of the afternoon (Kaufman et al.,

1998a; Prins et al., 1998).
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Figure 2.3: Monthly fire activity over the Amazon Basin for the states Rondônia, Mato

Grosso, Mato Grosso do Sul, Goias, and Amazonas in 1999 (Guyon et al., 2003). The

total number of fire pixels per 10000 km2 detected by AVHRR is presented. The lidar

location and the federal states of Brazil are shown for orientation in addition (Source:

Instituto Brasileiro de Geografia e Estat́ıstica).

Figure 2.3 shows the frequency of fires in five different states in Brazil for 1999 deter-

mined with AVHRR2 aboard the NOAA-12 satellite (Guyon et al., 2003). The lidar

station in the Brazilian state of Amazonas is indicated. The highest fire activity of the

five analyzed states was observed in the state of Mato Grosso. Agriculture and cattle

farming play the dominant economical role in this state. As a consequence, fire counts

rise up to 210 per 10000 km2 in August. In comparison to the other four analyzed

Brazilian states, the fire activity in 1999 in the state of Amazonas seems negligible

low. The highest fire activity in Amazonas state was observed in October and thus

later than in the four other analyzed states.

Freitas et al. (2007) reported that most fire areas in Amazonia are smaller than 5 ha

and only 3% of the fires are larger than 50 ha. Most of the small fires cannot be de-

tected with satellite instruments. As a consequence, e.g., MODIS detects 25% of the

total number of fires, but 60%–85% of the total fire radiative thermal energy. Thus, the

2Advanced Very High Resolution Radiometer
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large fires which produce most of the BBA are detected by MODIS (Kaufman et al.,

1998b). Aerosol emissions from these fires are estimated by using emission factors, the

size of the burned area, and fire counts from satellites (Freitas et al., 2007).

Figure 2.4 shows fires detected by the MODIS rapid response system (Justice et al.,

2002; Giglio et al., 2003; Davies et al., 2009) in South America for the twelve months

of the lidar observational period in 2008. A clear annual cycle is obvious. Between

January and April 2008, fires predominantly occurred in the extreme northern part

of South America in Venezuela and Colombia. At this time of the year, the ITCZ

is located south of the equator causing the dry season in these northern regions (see

Fig. 2.1). Sporadic fires were also detected in the south-east of Brazil. The fire ac-

tivity in the whole Amazon Basin was lowest in the transition months May and June.

An increasing number of fires was detected from July to September south and east

of the lidar location. The maximum burning activity (most detected fires) in the

south-eastern part of Brazil took place in the months of September and October. The

burning activity east of the lidar site peaks in October/November.

Almost no fires were detected throughout 2008 in the interior part of the Amazon

Basin which is covered with dense rain forest. The majority of the fires detected in

2008 occurred in the southern and south-eastern edges of the rain forest, where most

of the pasture and agriculture (and thus also deforestation) takes place.

Because fire activity is strongly linked to deforestation, the yearly deforestation rate

in Amazonia can be used to analyze 2008’s fire activity with respect to other years.

Figure 2.5 shows the yearly deforestation rate for the Brazilian Amazon rain forest from

1988 until 2009. The average deforestation rate in the 1990s was about 17000 km2 per

year. In 2004, the deforestation rate peaked with 27000 km2 per year. It is obvious

that since 2004 the forest clearing is significantly decreasing. The deforestation in 2007

(about 9000 km2) was only about one third of the deforestation in 2004 (27000 km2).

However, the deforestation in 2008 (12000 km2), the year of the observations, was

slightly higher than in 2007 and 2009. Consequently, 2008 seemed to be a year of

increased fire activity but representative for the 2006–2009 period.
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Figure 2.4: Monthly MODIS fire counts for January to December 2008.

Source: http://rapidfire.sci.gsfc.nasa.gov
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Figure 2.5: Yearly deforestation rate for the Brazilian Amazon rain forest. Source:

Artaxo et al. (2010), data from INPE (Brazilian National Institute for Space Research).

2.3 Aerosol transport mechanisms

The diurnal cycle of the convective mixing layer (ML) in combination with shallow to

deep convection controls the vertical transport of pollutants in the Amazon Basin. In

areas with fires activity, pyroconvection plays an important role, too (Freitas et al.,

2006). The diurnal cycle of the ML is controlled by heat fluxes and thermodynamical

stability of the lower atmosphere. Due to the humid environment, the latent heat flux

is typically three times higher than the sensible heat flux (Freitas et al., 2007) and

limits ML development. As a consequence, the height of the ML top over rain forest

in the Amazon Basin typically ranges from 1500–18003 m only (Nobre et al., 1996;

Guyon et al., 2005; Fisch et al., 2004).

Figure 2.6 shows the frequency of occurrence of the daily maximum ML top height at

the lidar site in 2008 as derived from ECMWF (European Centre for Medium-Range

Weather Forecasts) model data4. More details on the determination of the ML top

from ECMWF model data are given in Sec. 4.2.5. In most cases (more than 80%) of

that year, the ML was not deeper than 1500 m at the tropical lidar location. During

the dry season, a slightly broader distribution with higher values for the daily maxi-

mum ML top height is given. But only on 5% of the days, the ML exceeded a depth

of 2000 m.

A sketch illustrating the aerosol distribution, vertical transport, and formation pro-

3In this work all altitudes are given as height above ground level (agl) if not otherwise stated.
4ML-top data kindly provided by the Finish Meteorological Institute (FMI, Contact: Mika Komp-

pula (Mika.Komppula@fmi.fi)).
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Figure 2.6: Frequency distribution of the daily maximum ML top height as derived from

ECMWF (more information see Sec. 4.2.5) for the year of 2008.

cesses of aerosol in a smoky Amazonian environment is presented in Fig. 2.7 (modified

composite from Krejci et al., 2003 and Reid et al., 1998). Shallow and non-precipitating

convective systems develop typically in the upper part of the moist, but also polluted

ML and cause the transport of gases and particles into the lower free troposphere,

the so-called cloud convective layer (CCL, Longo et al., 2010). This layer is above

the ML but still below the trade-wind inversion (TWI) which usually occurs at alti-

tudes of 3–4 km over Amazonia. The CCL in Amazonia is much more significant for

the vertical transport of aerosol than in other regions of the Earth. Deep and moist

convection are also important transport mechanisms and can carry aerosol into the

clean free troposphere (FT) to altitudes up to the tropopause (Andreae et al., 2001).

During their transport by these convective systems, the particles can undergo several

in-cloud processes and thus the optical and microphysical properties may change. In

the out-flow region of cumulonimbus clouds (also indicated in Fig. 2.7), new particle

formation has been observed (Krejci et al., 2003).

Another important transport mechanism is pyroconvection in association with fires.

Air parcels are released with a very high temperature compared to the surrounding

air temperature. These air parcels can easily rise to high altitudes due to buoyancy

and are not trapped within the local ML. As a consequence, a large amount of smoke

particles reach the free troposphere and can be transported over large distances. Addi-
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Figure 2.7: Schematic overview of the aerosol distribution and respective transport

and transition processes in Amazonia under conditions with high fire activity (modified

composite from Krejci et al., 2003 and Reid et al., 1998).

tionally, condensation processes within the smoke plumes favor the updraft of particles

and pyro-clouds develop (Andreae et al., 2004).

The horizontal transport of aerosol towards and within Amazonia is determined by

the persistent trade winds. Once the aerosol has reached higher altitudes, the strong

trade winds can transport the particles over long distances. A schematic overview of

aerosol advection towards central Amazonia is shown in Fig. 2.8. During the wet sea-

son, the ITCZ is located in southern Amazonia (see Fig. 2.1) and thus north-easterly

winds prevail. At this time, advection of marine aerosol, Saharan dust, and African

BBA towards Amazonia is possible (e.g., Artaxo and Orsini , 1987; Talbot et al., 1990).

During the dry season, when the ITCZ is north of the equator (see Fig. 2.1), BBA

from fires within South America can be transported to the Amazon Basin (Artaxo

et al., 1994).
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Figure 2.8: Schematic overview of aerosol advection towards the central Amazon Basin.

2.4 Findings from previous experiments

Several field studies have been conducted in the last decades to investigate aerosol

conditions in the Amazon Basin. Table 2.1 lists these measurement campaigns together

with the respective focus of research and the main reference. In the following, the

findings from these field studies and other aerosol research activities relevant for the

lidar results discussed in this work are reviewed.

2.4.1 Amazonian aerosol characteristics

Amazonian aerosol is a complex composition of internally and externally mixed aerosol

particles. Biogenic aerosol (primary organic and secondary organic aerosols), BBA,

urban aerosol, mineral dust, and marine aerosol were observed in the Amazon Basin

during the field campaigns listed in Table 2.1. Figure 2.9 summarizes the main aerosol

types and their source regions as observed in these previous campaigns. A discrimina-

tion between In-Basin and Out-of-Basin sources is made.
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# Campaign Period Focus, topic Reference

1 ABLE 2 a & b
(The Amazon Bound-

ary Layer Experiment)

July –

August 1985

April – May 1987

Ground-based and airborne ob-

servations of trace gases and

aerosols

Harriss et al.

(1988)

Harriss et al.

(1990)

2 BASE–A & B
(Biomass Burning Air-

borne and Spaceborne

Experiment –Amazonas

& –Brazil)

August – Septem-

ber 1989 & 1990

Ground-based, airborne, and

satellite observations of trace

gases and aerosols

Kaufman et al.

(1992)

Ward et al.

(1992)

3 TRACE–A
(Transport and Atmo-

spheric Chemistry near

the Equator – Atlantic)

September 1992

(Brazil only)

Airborne observations and satel-

lite remote sensing of trace gases

and aerosols in tropical regions of

the Earth (Amazonia included)

Fishman et al.

(1996)

4 SCAR–B
(Smoke, Clouds, Radia-

tion – Brazil)

August –

September 1995

Ground-based and airborne ob-

servation of biomass burning

aerosol

Kaufman et al.

(1998a)

5 CLAIRE–98
(Cooperative LBA Air-

borne Regional Experi-

ment)

March 1998 Ground-based and airborne mea-

surements of biomass burning in

the northern hemisphere

Krejci et al.

(2003)

6 LBA–EUSTACH
1 & 2
(European Studies on

Trace Gas Emissions

and Atmospheric

Chemistry)

April – May 1999

September –

October 1999

Ground-based measurements of

background and smoke aerosol

Andreae et al.

(2002)

7 LBA–SMOCC
(Smoke, Aerosols,

Clouds, Rainfall and

Climate)

September –

November 2003

Airborne and ground-based mea-

surements of biomass burning

aerosol

Andreae et al.

(2004)

8 AMAZE–08
(The Amazonian

Aerosol Characteriza-

tion Experiment)

February –

March 2008

Ground-based in-situ and lidar

observations of natural aerosol

during the wet season

Martin et al.

(2010b)

9 EUCAARI
(European Integrated

project on Aerosol

Cloud Climate and Air

Quality Interactions)

2008 – 2009 Ground-based in-situ and li-

dar measurements of aerosols

throughout the year to cover wet

and dry seasons

Kulmala et al.

(2009, 2011)

Table 2.1: Overview of field campaigns focusing on aerosols in Amazonia since 1985.

LBA=Large-Scale Biosphere-Atmosphere Experiment in Amazonia.
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In-Basin sources

Natural Amazonian aerosol

Primary and secondary organic

aerosol from the biosphere

Amazonian smoke

Biomass-burning aerosol

from Amazonian fires

Urban/industrial pollution

Anthropogenic aerosol from 

cities or industrial areas

Out-of-Basin sources

Saharan dust

Mineral dust transported

over the Atlantic

Sea salt

Marine particles from

the Atlantic

Smoke from Africa

Biomass-burning aerosol originating 

from fires in Central Africa

1,6,8,9

1,2,4,5,6,7,9

5,9

1,5,8,9

1,5,8

1,(8),9

Figure 2.9: Overview of the different aerosol types that can be found in the Amazon

Basin. A separation between in-Basin and out-of-Basin sources is made. The campaigns

(number in the first column of Tab. 2.1) that provide observations of this specific aerosol

type are given in addition (lower right corner of each box).

In-Basin aerosols are dominated by natural and anthropogenic emissions from the bio-

sphere (primary and secondary organic aerosols, BBA, Martin et al., 2010a). Urban

pollution plays a minor role for aerosol conditions in the Amazon, except downwind of

Manaus (the so-called Manaus plume, Kuhn et al., 2010) and other major cities and

industrial areas. Intrusions of Saharan dust were frequently reported from observa-

tions in the wet season (e.g., Talbot et al., 1990; Swap et al., 1992). Other out-of-Basin

sources are BBA from Africa (Ansmann et al., 2009; Kaufman et al., 2005; Ben-Ami

et al., 2010) and marine aerosol which are often mixed with Saharan dust (e.g., Artaxo

et al., 1990; Formenti et al., 2001). The aerosol particles undergo several transitions

processes (e.g., coagulation, condensation, photochemical processes, cloud interaction

etc.) during their lifetime and thus the characteristics of aged aerosol may deviate

considerably from the properties of fresh or undisturbed aerosol (pure marine, pure

dust, pure smoke). In general, the aerosol conditions in Amazonia are very different

between the wet season and the dry season.
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Wet season

The wet season is characterized by a high frequency of low-level clouds, strong convec-

tion, and precipitation. Hence, wet deposition is highest in this season and particles

are removed quickly from the atmosphere. Because biomass burning within the Ama-

zon Basin is rare during the wet season (Artaxo et al., 1990), biogenic emissions from

the forest are the dominant aerosol source (Artaxo et al., 1988). Since these emissions

are comparably low, very clean aerosol conditions with dominance of natural aerosol

can be observed. Aerosol number concentration at ground level can then be rather low

with average values between 200 and 600 cm−3 (Zhou et al., 2002; Gunthe et al., 2009).

Martin et al. (2010a) hypothesizes by analyzing ground-based in-situ measurements

that the Amazon Basin is the only region in the world where it is possible to find

at some time aerosol conditions free of anthropogenic influence. Pöschl et al. (2010)

even state that aerosol conditions in Amazonia’s wet season “approach to those of the

pristine pre-industrial era.” Schafer et al. (2008) reported minimum monthly mean

values of 0.1±0.06 for the aerosol optical depth (AOD) at 440 nm for such background

conditions. Roberts et al. (2001) investigated cloud condensation nuclei during the wet

season at Balbina (50 km north of the EUCAARI field site) and concluded that aerosol

conditions in Amazonia are more “marine” than “continental.”

Generally, a low rate of new particle formation was observed (e.g., Ahlm et al., 2009).

This implies that the majority of the aerosol populations consist of aged aerosol (pos-

sibly a result of long-range transport). Artaxo and Hansson (1995) analyzed aerosol

samplings from different height levels of a 45 m high tower in a natural reserve near

Manaus. The authors found that concentrations of soil dust are lower at the ground

than above the canopy and concluded that the tropical rain forest is not a source of

soil dust.

Out-of-Basin sources of aerosol in the wet season are Saharan mineral dust (Swap

et al., 1992), sea salt (Artaxo et al., 1990), and BBA from Africa (Kaufman et al.,

2005). Due to the low natural aerosol load in Amazonia during the wet season, these

particles may have an important impact on the radiation budget (direct aerosol effect)

and on cloud processes (indirect effect). Saharan dust is the major source of aeolian

soil dust in the Amazon Basin. In 1981, Prospero et al. (1981), reported for the first

time that Saharan dust was observed at the coast of South America. In 1990, Talbot

et al. (1990), Artaxo et al. (1990), and Artaxo and Maenhaut (1990) presented results

from aerosol measurements made in central Amazonia during the ABLE experiment

in 1987 and hypothesized that Saharan dust could even have reached the central part
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of the Amazon Basin. Reichholf (1986) and Bristow et al. (2010) showed that with-

out this transport of nutrients from Africa, the growth of the Amazonian rain forest

would be limited. Since the first report of Saharan dust transport towards the Amazon

Basin, this phenomenon has been a major topic in Amazonian atmospheric research

resulting in many publications (e.g., Swap et al., 1992; Artaxo et al., 1994; Artaxo and

Hansson, 1995; Formenti et al., 2001; Koren et al., 2006; Schafer et al., 2008; Prenni

et al., 2009; Ben-Ami et al., 2010). These investigations are mainly based on aerosol

sampling at ground and satellite observations. Thus, almost no information on the

vertical distribution and the dust mixing ratio is available. Only Formenti et al. (2001)

reported extent and height of such dust plumes (see Sec. 2.4.2) from airborne measure-

ments over Suriname (northern Amazonia). Due to new technical possibilities, e.g.,

the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization),5

information on the vertical aerosol structure are now available. For instance, Ben-Ami

et al. (2010) analyzed the vertical structure of a dust plume moving over the Atlantic

Ocean towards Amazonia. Unfortunately, CALIOP measurements over the Amazon

Basin are strongly disturbed by enhanced radiation noise, because the Amazon Basin

lies in the South Atlantic Anomaly region, where the inner Van Allen radiation belts

make their closest approach to the Earth’s surface (Powell et al., 2009; Hunt et al.,

2009). In addition to the increased radiation noise, high cloud cover over the Amazon

Basin prohibits in many cases the retrieval of aerosol profiles in the troposphere from

CALIOP data. Thus, long-term ground-based remote sensing in the Amazon Basin is

of great importance for aerosol monitoring (i.e., also Saharan dust).

The importance of African BBA for Amazonia, however, remained unknown. One of

the first hints regarding smoke transport to South America was given by Talbot et al.

(1990): “Aerosol chemistry in the wet season is strongly influenced by long-range

transport from Saharan dust, marine aerosol, and possibly biomass-burning aerosol

from Africa.” Kaufman et al. (2005) quantified for the first time the BBA transport

from Africa towards Amazonia by using MODIS observations. The authors found that

the smoke contribution to the AOD in the mixed BBA/Saharan-dust plumes over the

Atlantic Ocean can be as high as almost 50% during the main burning period in Cen-

tral Africa (January–March). The fact that BBA from Africa clearly influences the

aerosol conditions in the Amazon Basin during the wet season is one major finding of

this work and will be intensively discussed in Sec. 6.1. Although research showed that

BBA is rich in specific elemental nutrients (e.g., Artaxo et al., 1993), the possibility

5aboard satellite CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)
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that BBA from Africa also acts as nutrient matter for the Amazon rain forest has not

been considered in the literature yet.

Dry season

In the dry season, there is less convection and precipitation than in the wet season

and thus the removal of aerosols from the atmosphere is less effective. Hence, locally

produced aerosol can be distributed on a regional scale. Due to the high fire activity in

Amazonia’s dry season (see Sec. 2.2), the aerosol conditions are strongly influenced by

BBA from the Amazon Basin and surrounding areas (e.g. Artaxo et al., 1994; Guyon

et al., 2003). Particle number concentrations at ground can then reach values up to

40000 cm−3 (Artaxo et al., 2002). Mean values for the particle number concentration

of 4000 cm−3 at surface level were reported during the burning season for the Brazilian

state Rondônia (Guyon et al., 2003, for orientation see Fig. 2.3). These values are one

or two orders of magnitude larger than the aerosol number concentration in the wet

season. Due to the meteorological conditions in the dry season, haze layers which

extend over several 100 km can form and persist for several days. For example, Prins

et al. (1998) reported a smoke pall covering about 7.9 million km2 in South America

in 1995 during SCAR-B as observed from space. This smoke heavily influences the

chemical and optical characteristics of the atmosphere in Amazonia (Andreae et al.,

1988). As a consequence, clouds need to grow to higher altitudes before precipitation

is possible (Andreae et al., 2004; Freud et al., 2008).

The influence of BBA can differ significantly in the various regions in the Amazon

Basin. The western and central part (lidar site) of Amazonia are usually assumed to

be less affected by anthropogenic fire activity. Holben et al. (1996a) analyzed sun pho-

tometer measurements at eight different locations in Amazonia and reported a high

variability in AOD depending on the region of the measurement. The highest BBA

influence was observed in the southern Amazon Basin, where most of the fire activity

takes place. Holben et al. (1996a) reported monthly averages of the AOD at 440 nm of

1.5 for sites in the southern part of the Amazon Basin during this season. The authors

concluded that the observed smoke was usually aged by more than one day. However,

they also observed an increased AOD in regions of no or little burning activity during

the dry season. Thus, advection of aged smoke towards these sites is important.

BBA can show very different optical and microphysical properties depending on, e.g.,

the fire type (Ferek et al., 1998) and the age of the particles. Flaming fires are linked

to higher burning temperatures than smoldering fires. As a consequence, smaller and
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more highly absorbing particles are generated by flaming fires in comparison to smol-

dering fires (Müller et al., 2005). Coagulation and condensation of gases on the surface

of the particles cause a shift in the size distribution towards larger particle radii with

time (age). Reid and Hobbs (1998) showed that the optical and physical properties

can dramatically change during the first minutes after the emission. Kaufman et al.

(1998a) reported that smoke particles increase their radius by as much as 60% in the

first three days in the atmosphere due to condensation and coagulation, reaching a

mass median radius of 0.13–0.17 µm. However, the authors found low variation in

the particle size distribution of aged smoke. Reid et al. (1998) report volume mean

diameter (VMD) of smoke particles for different burning types and aging stages in

Amazonia. For example, VMD of 0.28 µm for young smoke (older than 4 minutes)

from forest fires and of 0.35 µm for smoke hazes were observed. Martins et al. (1998)

found that the spherical approximation (and therefore Mie theory) for smoke particles

older than about 1 hour is reasonably valid for estimating the physical and optical

properties of the particles. In general, a low humidification factor was observed for

BBA in Amazonia (Kotchenruther and Hobbs , 1998).

The optical properties of BBA also show a wide variety due to the different fire types

and aging processes. For example, Ångström exponents decrease with the age of the

particle ensembles as a consequence of coagulation and condensation (Müller et al.,

2007a). Eck et al. (2003) analyzed and reported a wide range of Ångström expo-

nents (440–870 nm) for BBA worldwide. Values between 1.1 and 2.1 during conditions

with very high smoke aerosol loading (AOD > 2 at 500 nm) were observed.

Reported values of the single-scattering albedo (SSA) of BBA in the Amazon Basin

show high variability. Reid et al. (1998) found SSA values at 550 nm of 0.79 for young

smoke and 0.85 for aged smoke. Eck et al. (1998) reported SSA values between 0.81

and 0.94 and Dubovik et al. (1998) between 0.79 and 0.95 for BBA in Amazonia at

670 nm. SSA values for pure African smoke observed over the Cape Verde Islands

range from 0.63 to 0.89 (Tesche et al., 2011a).

However, radiative effects of a given aerosol layer depend not only on the optical prop-

erties of the aerosol layer but also on the presence of clouds (e.g., above a given aerosol

layer) and the surface albedo (Haywood and Shine, 1997). Ross et al. (1998) performed

radiative-transfer calculations and found that regional smoke haze over Amazonia lead

to a negative radiative forcing in the short-wavelength range. The negative radiative

forcing was found to be stronger over forest (dark surface) than over cerrado (less dark

surface).
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For improved radiative-forcing calculations a detailed knowledge of the aerosol prop-

erties in the vertical column over Amazonia on a statistical basis is necessary. The

height-resolved observations presented in this work further contribute to this field of

research.

2.4.2 Vertical aerosol distribution

Concerning the vertical aerosol layering over Amazonia most knowledge is based on a

few snapshot-like airborne measurements performed during specific experiments. No

long-term observations of the vertical aerosol structures have been conducted before

2008. In 2003, a micropulse lidar6 was operated in Rondônia during the dry season for

two months. However, results were not published. In this section, the major findings

from the airborne observations performed during the field campaigns listed in Table 2.1

are summarized.

Andreae et al. (1988) present airborne lidar and in-situ measurements made during

ABLE 2a in northern Brazil near the Amazon river during the dry season in 1985.

They found frequently smoke and haze layers between 1 and 5 km agl (above ground

level). The pronounced haze layers had a vertical depth of about 100–300 m and

extended over several hundred kilometers. Multiple layers of aerosol were frequently

observed during 11 research flights. Browell et al. (1988) analyzed the same flights and

found that under undisturbed conditions about two thirds of the aerosol loading are

within the ML and that the aerosol distribution above the ML is very inhomogeneous.

The airborne lidar used in this campaign was a DIAL (differential absorption lidar)

which is designed for ozone observations. As a consequence, the authors only present

the temporal evolution of aerosol backscatter intensity and thus no quantitative aerosol

properties.

Airborne in-situ observations up to 4 km agl focusing on BBA were performed in the

frame of TRACE-A in August/September 1992 (Pereira et al., 1996). Six flights for

vertical aerosol profiling were performed. It was found that the particle mass concen-

tration in areas of high fire activity peaked at around 2500 m agl. A maximum particle

number concentration of 16000 cm−3 was observed. Increased particle concentrations

often coincided with temperature inversions and were generally found between 2000

and 3000 m for these six flights.

During the SCAR-B experiments (Kaufman et al., 1998a), three different aircraft were

available for airborne observations. Eleven flights were performed with a downward-

6The Micropulse Lidar Network: http://mplnet.gsfc.nasa.gov
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looking standard backscatter lidar. Further 29 flights were conducted to characterize

the optical and microphysical properties of young and aged smoke in the Amazon

Basin by means of in-situ measurements (Reid et al., 1998; Reid and Hobbs , 1998).

However, most observations during this experiment with a focus on the dry season were

performed in the southern cerrado regions and thus may not be representative for the

Amazon rain forest. The research flights revealed that properties of aged smoked are

significantly different from that of young smoke. Ångström exponents varied from 1.2

to 2.5 for different smoke layers. The flights showed also that above the ML top very

often a second temperature inversion (i.e., TWI) was found below which the aerosol

was trapped. The top height of this CCL (see Sec. 2.3) was found to be between 2.1

and 4.1 km. King et al. (1998) analyzed heavy smoke layers by airborne lidar mea-

surements during the same experiment and found that aerosol was vertically confined

on a large scale from the surface up to 3–5 km height.

Formenti et al. (2001) present results from airborne observations made during

CLAIRE-98 in Suriname and Brazil in March 1998. Two cases with intrusions of

Saharan dust and sea salt were observed. The dust extended from the ground up to a

pressure level of 650 hPa (about 3500 m above sea level (asl)). On one day, the scat-

tering maximum of the dust was close to the ground, on another day it was at around

750 hPa (about 2300 m asl). A sporadic enhanced carbon-monoxide concentration at

400 hPa (about 7400 m asl) was associated with smoke from vegetation fires in Central

America and Venezuela. Andreae et al. (2001) analyzed the airborne measurements

during this campaign and found increased concentrations of trace gases and aerosol

above 10 km asl. After analyzing trajectories, Andreae et al. (2001) hypothesized that

the aerosol found at these high altitudes originated from savanna fires at the edges of

Amazonia. According to this hypothesis, the smoke was transported to interior regions

of the Amazon Basin by the trade winds and there it was lifted by deep convection to

high altitudes. Then the BBA was transported by the high-altitude circulation back

to the edge regions of Amazonia where the measurements took place. It was spec-

ulated that 80%–95% of the accumulation-mode particles had been removed – most

probably by wet deposition during the deep convective transport to the upper tropo-

sphere. Measurements of the particle size distributions also implied that new particle

formation occurs at the edges of cumulonimbus clouds at high altitudes (Krejci et al.,

2003).

During LBA-SMOCC, several research flights with in-situ instrumentation were per-

formed in Rondônia (south-west Amazonia, mostly cerrado) during September–
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November 2002. Chand et al. (2006) discussed the optical and physical properties

of smoke within and above the ML from these airborne and ground-based in-situ mea-

surements. They found that scattering of aerosols increased from the surface to the

FT by 2–10 times due to aging (coagulation and condensation). The authors con-

cluded that aging plays a major role for the optical and microphysical properties of

Amazonian smoke aerosol. Guyon et al. (2005) analyzed airborne temperature profiles

during the same campaign and found that the afternoon ML top height is between

1350 and 1900 m agl over the mostly cerrado-covered area. The authors also found

that vertical transport of smoke from the ML to the cloud convective layer and the FT

above is a very common phenomenon, and that the reduction of the particle number

concentration during this transport is of the order of 20% only. Thus, they conclude

that non-precipitating clouds play an important role regarding the lifting of aerosol

particles above the ML. Guyon et al. (2005) also observed that smoke particles above

the ML were larger than particles unprocessed by clouds.

Despite these airborne and ground-based measurement activities conducted during the

field campaigns listed in Table 2.1, a representative picture of the aerosol conditions

over the Amazon rain forest including the vertical transport, mixing and aging pro-

cesses was not available. As a next step of research, long-term observational studies

were proposed. Thus, in the framework of EUCAARI, the first long-term study with

an advanced aerosol lidar was performed in the Amazon Basin.
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Chapter 3

Experiment: Location,

instrumentation, and observations

Measurements of aerosol properties were performed in the Amazon rain forest in Brazil

from 2008 to 2009 in the framework of the European Integrated Project on Aerosol,

Cloud, Climate, Air Quality Interactions (EUCAARI, Kulmala et al., 2009, 2011). Be-

sides several ground-based in-situ aerosol observations, the Leibniz Institute for Tropo-

spheric Research, Leipzig, Germany performed lidar observations with the automated

multiwavelength-Raman-polarization lidar PollyXT from January to November 2008.

In this Chapter, information about the field site is given followed by a detailed de-

scription of the technical setup of PollyXT . Last but not least, an overview of the lidar

measurements taken in Amazonia is provided.

3.1 Field site

The location of the lidar field site is shown in Fig. 3.1 (left). The polarization-Raman

lidar PollyXT (Sec. 3.2) was situated at 2◦ 35.9’ S and 60◦ 2.3’ W at 83 m asl in the

central northern part of the Amazon Basin. Local time is UTC – 4 hours. Figure 3.1

(right) shows a detailed view of the measurement area. The observations were per-

formed 60 km north of downtown Manaus and the Amazon river at the Silvicultura

research site of the National Institute for Amazonia Research (INPA). About 17 km

west of the lidar location, the EUCAARI in-situ measurements were performed using

several research towers. Because the main wind direction is east to north-east, advec-

tion of pollution from the two-million-inhabitants city Manaus (the so-called Manaus

plume) is not expected at the field site (e.g., Kuhn et al., 2010). Regular radiosonde
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Lidar 

Location: 2.6°S , 60°W

Radiosonde

In-situ m easurem ents

M ain wind direction

Location of 

lidar

Figure 3.1: Left: Map of northern South America showing the location of the mea-

surements (yellow star). Map source: http://earthobservatory.nasa.gov. Right: Satellite

image of the experimental area. Lidar site, in-situ field sites, and location of radiosonde

launches are indicated. Source: Google maps.

launches have been performed every 12 hours (0000 UTC and 1200 UTC) at the mili-

tary airport of Manaus in the south of the city.

Figure 3.2 shows a photograph of the field site. The lidar was placed on a glade sur-

rounded by pristine tropical rain forest. PollyXT is on the right side in the photograph

behind a tent for the operators. The satellite dish in the middle of the picture was

used to maintain PollyXT remotely via internet connection. An AERONET (Aerosol

Robotic Network, Holben et al., 2001) sun photometer was placed next to the lidar

on a 15 m high tower (left in Fig. 3.2). This sun photometer was operated by the

Institute of Physics of the University of São Paulo and analyzed data is available at

the AERONET web site1 (site name: Manaus).

In parallel to EUCAARI, the Amazonian Aerosol Characterization Experiment

(AMAZE-08, Martin et al., 2010b) took place at the same locations in February and

March 2008. Additional instruments for aerosol and gas investigations were operated

during that time.

1http://aeronet.gsfc.nasa.gov/
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EUCAARI field siteEUCAARI field site
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sun sun AeronetAeronet

photometerphotometer

Lidar

Figure 3.2: Lidar field site in the Amazon rain forest: The lidar (right), the satellite

dish for the internet connection (middle), and the AERONET sun photometer on the top

of a tower (left) can be seen.

3.2 PollyXT

PollyXT (Portable lidar system eXTended) is a compact automated multiwavelength-

polarization-Raman lidar. An overview of the main features of this lidar is presented

in Table 3.1. The lidar emits light at three wavelengths and has seven detection

channels. This lidar is a so-called 3+2+1 system which means that the backscatter

coefficient is determined at three wavelengths, the extinction coefficient at two

wavelengths, and the depolarization ratio at one wavelength. Such systems are state

of the art in lidar research but mostly not automated. In addition to these standard

detection schemes, one fast analog channel is installed in the lidar. For the indepen-

dent determination of backscatter and extinction coefficients, the Raman lidar method

(Ansmann et al., 1992) is applied. At daytime, when the Raman channels cannot be

used, backscatter coefficients are retrieved with the Fernald-Klett algorithm (Klett ,
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Emitter

Laser type Nd:YAG Continuum Inlite III

Simultaneously emitted @ 20 Hz 180 mJ/pulse (1064 nm)

110 mJ/pulse (532 nm)

60 mJ/pulse (355 nm)

Beam expansion for all wavelengths 1:7.5 (beam diameter from 6 to 45 mm)

Divergence after beam expansion <0.2 mrad

Receiver

Newtonian telescope

Diameter of main mirror 30 cm

Focal length 90 cm

Receiver field of view 1 mrad

Signal detection

Channel Detected Detection Central Max. filter Filter

notation backscatter signal mode wavelength transmission bandwidth

(nm) (%) (FWHM, nm)

355 elastic photon counting 354.68 72 0.94

355s cross-polarized elastic photon counting 354.68 72 0.94

387 N2 Raman photon counting 386.73 68 0.34

532pc elastic photon counting 532.06 70 1.12

532a elastic analog 532.06 70 1.12

607 N2 Raman photon counting 607.4 82 0.31

1064 elastic photon counting 1064.09 79 1.15

Detection mode Temporal resolution Spatial resolution

photon counting 30 sec 30 m

analog 5 sec 7.5 m

Table 3.1: Overview of main PollyXT specifications.

1981; Fernald , 1984). From these measured extensive quantities, intensive particle

properties like the lidar ratio (ratio of extinction to backscatter coefficient) and the

Ångström exponents can be calculated. The volume and particle depolarization ratio

is determined with the linear-polarization lidar method (Murayama et al., 1999).

Furthermore, microphysical properties, e.g., effective radius, can be retrieved via

inversion (Müller et al., 1999a). A full description of the lidar data analysis and the

resulting products is provided in Chapter 4. However, for the understanding of the

data analysis, an introduction into the technical setup of PollyXT is essential and is

given in the following.
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Figure 3.3: Optical set-up of PollyXT . Details are explained in the text.

A full description of PollyXT is presented in Althausen et al. (2009), from which the

following information is extracted without explicit citing.

A schematic sketch of the optical setup of PollyXT is shown in Fig. 3.3. The

emitter and receiver optical parts are indicated with ’E’ and ’R’, respectively. As

light source a Nd:YAG laser of type Inlite III from Continuum (E0 in Fig. 3.3 )

is used. This laser emits light pulses at 1064 nm with a repetition rate of 20 Hz

(see Table 3.1). The total energy per laser pulse is about 450 mJ. The divergence

of the emitted laser beam before beam expansion is less than 1.5 mrad. By using

second-harmonic-generation (E1) and third harmonic generation (E2) crystals, parts

of the light are transformed to light pulses at 532 and 355 nm, respectively. Thus,light

at 355, 532, and 1064 nm is emitted simultaneously. The resulting energy of the

emitted light pulses is approximately 180 mJ at 1064 nm, 110 mJ at 532 nm, and

60 mJ at 355 nm. The emitted radiation is linearly polarized at 355 and 532 nm.

With two quartz prisms (E3 and E4), the beam is directed into the achromatic beam

expander (E5), where the beam diameter is enlarged from about 6 mm to about
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45 mm (a factor of 7.5). This leads to a divergence of the beam of less then 0.2 mrad.

The beam is then transmitted into the atmosphere.

Backscattered light from the atmosphere is collected with a Newtonian telescope (R1

and R2). Technical details of the telescope are listed in Table 3.1. The pinhole (R3)

defines the receiver field of view of 1 mrad. Behind the pinhole an achromatic lens

(R4; focal length = 60 mm) collimates and transmits the light to the seven detection

channels and a camera (CAM). Dichroic beamsplitters (R5, R6, R8, and R9) separate

the light according to its wavelengths. The beamsplitter R7 transmits 70% of the

light intensity at 355 nm to the channel that is used for detecting the cross-polarized

backscattered light and reflects 30% of the intensity to the channel that is used for

detecting the unpolarized backscattered light at 355 nm. The beamsplitters R11

and R12 have a transmission of 50% and a reflectivity of 50% reflection at 532 nm.

The beamsplitters R13 (532 nm) and R10 (607 nm) are used to head the light into

the pertinent detectors. R14 is a polarizer which ensures only the transmission

of cross-polarized light at 355 nm. An overview of the seven detection channels

regarding detected light and detection mode as well as the optical specifications of

the used interference filters is given in Table 3.1. Planoconvex lenses are used in

front of all detectors to focus the received light on the photocathode of the photo

multiplier tubes (PMT). Absorptive neutral-density filters are installed in front of

each detection channel to attenuate the received light to proper count rates. The

filter strength for each channel can change during the operation of the system due to

different atmospheric conditions, alternating laser power, etc. The maximum count

rate of the PMTs is kept below 10 Mcps to avoid dead-time effects (Donovan et al.,

1993; Wandinger , 2005a). The signals of the photon-counting PMTs are adapted to

the data acquisition (DAQ) cards by preamplifiers. The data are acquired with three

2-channel photon-counting cards. These cards have a 400 MHz count rate capability

and 200 ns bin width. A temporal and spatial resolution of the detected signal of

30 s and 30 m, respectively, is used. The analog detected signals have a spatial

and temporal resolution of 7.5 m and 5 s, respectively. The DAQ is triggered by a

fast photodiode which responds to the laser pulse. All data are stored in Network

Common Data Form (NetCDF). The CAM is used for the adjustment of the laser

beam to the field of view of the telescope.

Fig. 3.4 shows PollyXT with opened doors. All optical and electronic devices

are mounted in a weather-proof, thermally insulted cabinet. The dimensions are

approximately 1.8 m height, 1.44 m width, and 0.8 m depth. Two quartz plates
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Figure 3.4: Cabinet with open doors showing the major parts of PollyXT . 1: roof cover,

2: sensors for outdoor temperature, air pressure, and rain, 3: air condition, 4: uninter-

ruptible power supply, 5: computer with data acquisition, 6: laser power supply, 7: laser

head, 8: beam expander, 9: receiver telescope, and 10: receiver with seven channels.

are installed as windows at the roof of the cabinet to guarantee no air exchange

with the environment but the undisturbed penetration of the emitted and received

light. These quartz plates can be protected with an automatic roof cover (1 in

Fig. 3.4). Furthermore, a precipitation sensor (2) is installed on the roof of the

cabinet and is connected to the roof cover (1) and the main computer (5). When the

sensor detects precipitation, the roof cover is closed and a signal is sent to the data

acquisition software which in turn shuts down the laser and ends the measurement.

Air temperature and pressure are recorded continuously at about 2 m height above

the ground (2). The inverter air condition system (3) consists of an inner and an

outer part and is needed to maintain a stable temperature within the cabinet. Inside
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the cabinet, an uninterruptible power supply (4) is installed to ensure a proper power

supply and to bypass short power failures. The main computer (5) and the laser

power supply (6) are connected to the uninterruptible power supply. The optical

board with the laser (7), the beam expander (8), the receiver telescope (9), and the

7-channel receiver unit (10) is mounted in such a way that all measurements are made

at an off-zenith angle of 5◦.

The measurements are performed automatically controlled by a computer. According

to the measuring schedule, the DAQ software opens the roof, starts the laser,

monitors the system status, starts data acquisition, and records the data. During the

measurement, the temperature inside the cabinet is monitored with two temperature

sensors and the laser power is monitored with an external power meter.

The automated, continuous measurements in Brazil were controlled remotely via

internet. This allowed the control of the system and, e.g., the change of the measure-

ment schedule. Local scientists assisted in maintaining the lidar (e.g., cleaning of the

quartz window), and performed small reparations.

3.3 Overview of observations

The lidar observations at the EUCAARI site in Brazil started on 22 January 2008 and

lasted until 11 November 2008. An overview of days at which measurements were per-

formed is given in Fig. 3.5. This timetable is available on the webpage polly.tropos.de,

where all data are collected. The temporal developments of the lidar measurements

(height-time displays of the range-corrected signal, see, e.g., Chapter 6) are accessible

for each observation day at this public domain. During the 10-months observational

period, lidar measurements could be performed on 211 days resulting in more than

2500 hours of tropospheric aerosol and cloud profile observations. Thus a very high

coverage in terms of observation days could be achieved (Fig. 3.6). A severe laser

malfunction, however, interrupted the measurements in June/July for six weeks. For

the rest of the observation period, only minor interruptions occurred due to, e.g., air-

condition problems or power failures. Consequently both the wet and the dry season

were sufficiently covered with lidar observations. Short-term interruptions were some-

times caused by insects which were attracted by the laser beam (see Fig. 3.7, upper

right picture). These insects flew through the rain sensor and apparent rain fall was

detected. In such cases, the measurements were automatically interrupted for 30 to

120 seconds only. Fortunately, these short-term interruptions occurred not very fre-
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Figure 3.5: Overview of observations with PollyXT in Brazil. Image taken from

polly.tropos.de. Bold days are days with measurements. A large measurement gap due

to a laser damage occurred in June–July.

quently and, hence, did not significantly disturb the data analysis.

All the different aerosol conditions which can be found in the Amazon rain forest were

measured during the 10-months observational period. Nevertheless, fog development

during night time at the canopy level (see Fig. 3.7, lower left picture) prohibited a de-

tailed analysis of many wet-season observations. During daytime, the high frequency

of low-level clouds and rain (Fig. 3.7, the two lowermost right pictures) often pre-

vented the determination of vertical aerosol profiles. Fog, low-level clouds, and rain

disturbed the lidar observations also during the dry season. However, the frequency

of occurrence of such events was much lower than during the wet season.

Instrumental problems (e.g., air-condition problems, overlap problems, wrong adjust-

ment of trigger levels and not working PMT’s) occurred several times and caused that

data from certain channels could not be used for analysis. Thus, not all data products

are available for every observation case.

The results presented in this work are finally based on 60 wet-season and 55 dry-season
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Figure 3.6: Lidar data coverage for the Amazonian measurements in 2008. The ratio of

observation days to the total days per month is shown. Measurements began on 22 Jan-

uary and were terminated on 11 November, thus 100% coverage was not possible for these

months. A severe laser crash caused the low data coverage in June and July.

observation cases. However, for most of the wet-season cases, a too low signal-to-noise

ratio and problems with the overlap of the receiver field of view and the laser beam

prohibited the independent evaluation of the extinction coefficient from the Raman

channels (Sec. 4.2.1). Thus, for most wet-season cases, the AOD is retrieved from the

elastic channel by assuming a constant extinction-to-backscatter ratio (see Sec. 4.2.4).

For the dry-season cases, mostly all products of PollyXT were available.

Further impressions from the field campaign, also showing some “biological distur-

bances”, are presented in Fig. 3.7. The lidar observations are presented and discussed

in form of representative case studies (Chapter 6) and in form of statistical results

based on the entire set of measurements (Chapter 7).
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Figure 3.7: Impressions from the EUCAARI lidar campaign in Amazonia in 2008.
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Chapter 4

Lidar methodology

Table 4.1 gives an overview of the possible aerosol products derived from PollyXT

measurements. In this Chapter, an introduction into the basic lidar theory and the

lidar retrieval methods applied in this work is given. Some parts of the lidar theory

and the lidar algorithms have been already discussed in Baars (2007) and are adopted

without explicit citing.

Parameter Symbol Remarks

Backscatter coefficient βpar @ 355, 532, 1064 nm

Extinction coefficient αpar @ 355, 532 nm

Linear depolarization ratio δpar @ 355 nm

Lidar ratio Spar = αpar

βpar @ 355, 532 nm

Ångström exponent å α and β related

Volume size distribution via inversion

Effective radius reff via inversion

Number, surface, and volume conc. via inversion

Complex refractive index via inversion

Single scattering albedo (SSA) via inversion and Mie code

Table 4.1: Overview of particle optical and microphysical properties that can be derived

from the multi-wavelength lidar observations with PollyXT .
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4.1 Lidar principle and equations

Lidar is the acronym for light detection and ranging. A laser pulse is emitted into

the atmosphere and the signal backscattered by molecules and particles is detected

with the receiver unit with a high temporal resolution. The distance z between the

lidar and the scattering volume in the atmosphere can be calculated with the speed of

light c and the time t between the emission of the laser pulse and the detection of the

returned light:

z =
tc

2
. (4.1)

The received power due to elastic backscattering at the emission wavelength λ can be

described with the lidar equation (e.g., Wandinger , 2005b):

Pλ0(z) = P0
O(z)

z2
Cs(λ0)βλ0(z)exp

[
−2

∫ z

0

αλ0(ζ)dζ

]
. (4.2)

The power Pλ0 received from the range z depends on the emitted power P0 at wave-

length λ0, the overlap function O(z), a height-independent system constant Cs(λ0),

the volume backscatter coefficient βλ0(z) of the backscattering volume, and the vol-

ume extinction coefficient αλ0(z) between the backscattering volume and the lidar.

O(z) describes the overlap between the laser beam and the field of view of the receiver

(see Sec. 5.1). Close to the lidar there is no overlap and thus O(z) = 0. The distance

at which a complete overlap is achieved (O(z) = 1) depends on the individual lidar

system (transmitter-receiver configuration). Values vary between a few tens of meters

and several thousand meters for this distance. Cs(λ0) represents the wavelength-

dependent system efficiency. It contains all information about the performance of the

individual system components (size of the telescope area, transmission of the optics

at λ0, efficiency of detectors, etc). βλ0(z) is the volume scattering coefficient for the

scattering angle of 180◦ and has the dimension of m−1sr−1. The exponential term

(transmission term) describes the attenuation of light by scattering and absorption on

its way through the atmosphere. According to the Lambert–Beer–Bouguer law, the

transmission depends on the volume extinction coefficient αλ0(z) and the length of the

light path, which is in case of lidar twice the distance between the instrument and the

backscattering volume. αλ0(z) is given in m−1. The lidar equation (Eq. 4.2) is the

basic equation for the retrieval of particle properties when using an elastic backscatter

lidar (see methods in Sec. 4.2.2).

In the case of a Raman lidar, the inelastically backscattered light caused by Raman

scattering from atmospheric molecules (e.g., nitrogen) is measured in addition to the
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elastically backscattered light (see method in Sec. 4.2.1). The received power due to

inelastic scattering at the Raman wavelength λRa is described by

PλRa
(z) = P0

O(z)

z2
Cs(λRa)βλRa

(z)exp

[
−
∫ z

0

αλ0(ζ) + αλRa
(ζ)dζ

]
, (4.3)

with the molecular backscatter coefficient for vibrational-rotational scattering βλRa
(z)

at the shifted wavelength λRa. The transmission term considers light extinction on

the way to the backscattering volume at λ0 and on the way back to the lidar at the

shifted wavelength λRa.

The atmospheric volume backscatter and extinction coefficients consist of molecular

(superscript mol) and particle (superscript par) contributions and are defined as:

α(z) = αmol(z) + αpar(z) (4.4)

and

β(z) = βmol(z) + βpar(z). (4.5)

The relationship between the extinction and the backscatter coefficient defines the

lidar ratio for the atmospheric particles and molecules:

Spar(z) =
αpar(z)

βpar(z)
(4.6)

and

Smol(z) =
αmol(z)

βmol(z)
. (4.7)

The polarization state of the received light can be used to gain information on

the sphericity of the particles. This is possible since the emitted laser light is

linearly polarized. In order to retrieve the volume and particle depolarization ratio,

the backscattered light vertically polarized (superscript ⊥) with respect to the

polarization plane of the emitted laser light is detected in addition to the unpolarized

(no superscript) and/or the parallel-polarized (superscript ‖) backscattered light

component (more details in Sec. 4.2.6):

⊥Pλ0(z) = P0
O(z)

z2
⊥Cs(λ0)⊥βλ0(z)exp

[
−2

∫ z

0

αλ0(ζ)dζ

]
(4.8)

and
‖Pλ0(z) = P0

O(z)

z2
‖Cs(λ0)‖βλ0(z)exp

[
−2

∫ z

0

αλ0(ζ)dζ

]
. (4.9)
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The received signals ‖,⊥Pλ0 for parallel and cross-polarized light depend on the corre-

sponding backscatter coefficient ‖,⊥βλ0 and the polarization-plane-dependent system

efficiency ‖,⊥Cs(λ0). The emitted power P0 and the transmission term are identical

for Eq. 4.8 and 4.9. Also the overlap function O(z) is assumed to be equal for both

channels when the system is well designed and aligned.

4.2 Lidar methods

In this section, the evaluation methods for particle parameter as listed in Table 4.1

are briefly summarized. First, the retrieval of the particle backscatter and extinction

coefficients with the Raman (Ansmann et al., 1990; Ansmann et al., 1992) and Fer-

nald/Klett (Fernald , 1984; Klett , 1981) methods is described. The various Ångström

exponents are introduced before the methodology for the AOD retrieval and the verti-

cal structure analysis is presented. The calculation of the particle linear depolarization

ratio (Murayama et al., 1999; Freudenthaler et al., 2009) is explained next. The smoke-

dust separation by means of the particle depolarization ratio is described afterwards.

Last but not least, a short overview over the determination of microphysical particle

properties via inversion (Müller et al., 1999a) is presented.

In the first step of the lidar data analysis, the raw signals are preconditioned by back-

ground subtraction and by temporal averaging to reduce the statistical error to a

tolerable level. Statistical errors are computed by means of the Gaussian law of error

propagation as, e.g., outlined by Tesche (2011). After temporal averaging, an overlap

correction is applied (Wandinger and Ansmann (2002), see Sec. 5.1).

4.2.1 Backscatter and extinction coefficient – Raman lidar

method

For the independent determination of the particle extinction and backscatter coeffi-

cients the Raman lidar method is applied. For this method, two independent mea-

surements are performed to obtain the elastically backscattered lidar signal Pλ0(z)

(Eq. 4.2) and the inelastically backscattered lidar signal PλRa
(z) (Eq. 4.3, in case of

PollyXT from atmospheric nitrogen molecules). The use of these two independently

measured signals leads to profiles of the particle extinction coefficient (Ansmann et al.,
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1990)

αpar
λ0

(z) =

d
dz

ln NRa(z)
z2PλRa

(z)/O(z)
− αmol

λ0
(z)− αmol

λRa
(z)

1 +
(
λ0
λRa

)̊aα
(4.10)

and the particle backscatter coefficient (Ansmann et al., 1992)

βpar
λ0

(z) = [βpar
λ0

(z0) + βmol
λ0

(z0)]
Pλ0(z)PλRa

(z0)NRa(z)

PλR(z)Pλ0(z0)NRa(z0)

×
exp

[
−
∫ z
z0
αpar
λRa

(ζ) + αmol
λRa

(ζ)dζ
]

exp
[
−
∫ z
z0
αpar
λ0

(ζ) + αmol
λ0

(ζ)dζ
] − βmol

λ0
(z). (4.11)

NRa is the number density of nitrogen molecules and åα is the wavelength dependence

of the particle extinction coefficient (Ångström exponent, see Eq. 4.18). The overlap

function O(z) has a crucial influence on the determination of the particle extinction

coefficient only, if one again assumes that O(z) is identical in the two channels from

which the signals for the retrieval of the backscatter coefficient are taken. This assump-

tion is generally valid for a well designed Raman lidar system. z0 in Eq. 4.11 is the

reference height at which clear, i.e., ideally particle-free air conditions exist. NRa(z)

and the molecular parts of the backscatter and extinction coefficients are calculated

from temperature and pressure profiles of the temporally closest radiosonde launch

(Manaus military airport) after Bucholtz (1995). Calculation details are provided in

Appendix A. The reference height z0 and the particle backscatter coefficient βpar
λ0

(z0)

at this height have to be estimated a priori.

If not otherwise stated, a vertical smoothing window of 3 height bins (90 m) and of

9 height bins (270 m) was applied in this work for the retrieval of the particle backscat-

ter coefficient and of backscatter-related products (e.g., AL top and backscatter-related

Ångström exponent), respectively. For the extinction coefficient and related products

(e.g., lidar ratio and extinction-related Ångström exponent) a vertical smoothing win-

dow of 25 height bins (750 m) was applied.

4.2.2 Backscatter coefficient – Klett method

During daytime, only the elastically backscattered light can be used. The high level

of sky background light prohibits the detection of Raman signals with sufficiently low

signal noise. The Fernald/Klett method (Fernald , 1984; Klett , 1981) must be employed
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in this case. The particle backscatter coefficient is then obtained as

βpar
λ0

(z) = −βmol
λ0

(z) +
A(z0, z, λ0)

B(z0, λ0)− 2Spar
λ0

∫ z
z0
A (z0, ζ, λ0)dζ

, (4.12)

with

A (z0, x, λ0) = x2Pλ0 (x) exp

[
−2
(
Spar
λ0
− Smol

) ∫ x

z0

βmol
λ0

(ζ) dζ

]
(4.13)

and

B (z0, λ0) =
z2

0Pλ0 (z0)

βpar
λ0

(z0) + βmol
λ0

(z0)
. (4.14)

Here, contrary to the Raman method, the particle lidar ratio Spar (Eq. 4.6) has to be

assumed in addition to the reference height z0 and the particle backscatter coefficient

at this height βpar
λ0

(z0). Thus, with this method the particle backscatter coefficient is

obtained — and the particle extinction coefficient is derived from it — by means of

an estimated particle lidar ratio Spar
λ0

.

4.2.3 Ångström exponents

The spectral dependence of the aerosol optical properties is described by the Ångström

exponent (Ångström, 1964; Ansmann and Müller , 2005). From measurements with

the multi-wavelength lidar PollyXT , Ångström exponents are calculated from the three

particle backscatter coefficients, the two particle extinction coefficients and the two

particle lidar ratios.

The backscatter-related Ångström exponent is computed from the particle backscatter

coefficients at 355 and 532 nm, and at 532 and 1064 nm, respectively:

åβ355/532(z) = − ln[βpar
532(z)/βpar

355(z)]

ln(532/355)
(4.15)

and

åβ532/1064(z) = − ln[βpar
1064(z)/βpar

532(z)]

ln(1064/532)
. (4.16)

The relationship between the particle lidar ratio at 355 and 532 nm is determined by

åS355/532
(z) = − ln[Spar

532(z)/Spar
355(z)]

ln(532/355)
. (4.17)

The respective spectral behavior of the particle extinction coefficient is gathered by

åα355/532
(z) = − ln[αpar

532(z)/αpar
355(z)]

ln(532/355)
(4.18)

and via the relationship (Ansmann et al., 2002)

åα355/532
(z) = åβ355/532(z) + åS355/532

(z). (4.19)



4.2. LIDAR METHODS 45

4.2.4 Aerosol optical depth

The aerosol optical depth (AOD) for a certain wavelength λ is determined with the

lidar by integrating the extinction profile from the surface up to the maximum possible

measurement height zmax (e.g., the tropopause or in case of clouds the cloud base

height):

τλ =

∫ zmax

0

αpar
λ (z)dz. (4.20)

Because of the incomplete overlap between the laser beam and the field of view of

the telescope (see Sec. 5.1), the particle extinction coefficient cannot be determined

near the surface. For the AOD calculation, a well-mixed atmosphere with height-

independent extinction is therefore assumed for the lowermost part of the atmosphere

for which no lidar measurements are available.

The extinction coefficient is usually determined with the Raman lidar method (see

Sec. 4.2). However, for some night-time measurements in the wet season and for all

daytime measurements, the vertical profile of the particle extinction coefficient cannot

be retrieved via the Raman lidar method due to a too low signal-to-noise ratio (caused

by, e.g., a very low AOD, detector problems, or high light-background level). In these

cases, the extinction coefficient is calculated as follows: The backscatter coefficient is

calculated with the Raman lidar method (night time) or the Klett method (daytime).

In contrast to the retrieval of the particle extinction coefficient, the calculation of the

particle backscatter coefficient at times with a low signal-to-noise ratio in the Raman

channels is possible because the method is less sensitive to signal noise. The minimum

height of the vertical profile of the particle backscatter coefficient depends on the

method used for the calculation. It is about 300 m with the Raman lidar method and

about 800 m with the Klett method depending on the specific overlap characteristics

(see Sec. 5.1). Finally, a constant lidar ratio is multiplied to the profile of the particle

backscatter coefficient to obtain the vertical profile of the particle extinction coefficient.

The AOD is then calculated by using Eq. 4.20 as follows:

τλ = Spar
λ

∫ zmax

0

βpar
λ (z)dz. (4.21)

It is obvious that the estimation of the particle lidar ratio is crucial for the AOD

computation with this method. The resulting uncertainties are estimated by varying

the particle lidar ratio from 40 to 80 sr. For the results presented in this work,

τλ(S
par = 60 sr) is shown together with error bars obtained from the calculation

of τλ(S
par = 40 sr) and τλ(S

par = 80 sr).
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4.2.5 Vertical aerosol structure analysis

Aerosol layering in the tropics can be very complex (see Sec. 2.3). Sources at the

surface as well as local and meso-scale aerosol transport processes influence aerosol

layering and the vertical extent of the aerosol column. At daytime, low-level clouds

frequently develop so that a CCL exists above the ML as it was illustrated in Fig. 2.7.

The CCL usually extends up to the TWI but is already a part of the FT. At night

time, the vertical structure in the Amazon Basin can be even more complex than at

daytime as discussed by Browell et al. (1988). Aerosol layering is, however, often

not well correlated to these thermodynamical layering caused by cloud-formation and

convective processes. Usually no clear aerosol gradient was found between the ML,

the CCL, and the clear troposphere above. Therefore, the classical approaches for the

determination of the ML top height by lidar as possible at mid-latitudes (Baars et al.,

2008) cannot be applied to lidar profiles in the tropics. Thus, analysis of the aerosol

layer structure from the lidar observations in Amazonia (Sec. 7.2) is performed by

applying several different approaches: The top height of the aerosol layer (AL), the

aerosol scale height, and the ML top from a forecast model are used. These parameter

are discussed in the following.

Aerosol layer top height

The AL top height represents the height at which the atmospheric aerosol load reaches

clean FT conditions. To quantify the aerosol load at different heights and to identify

the top of the AL, the particle backscatter coefficient at 1064 nm is used. Backscatter-

ing at 1064 nm is very sensitive to particles because molecular scattering (i.e., Rayleigh

scattering) is proportional to λ−4. Thus, the contribution of molecular scattering to

the total backscatter is much lower at 1064 nm than at, e.g., 355 nm (about two orders

of magnitude).

As suggested in Vaughan et al. (2005), aerosol layers can be defined as “any extended

and contiguous region of enhanced backscatter signal that rises significantly above the

expected clear air value”. In this work, the height of the AL top (zAL) is defined by

means of a threshold as follows:

βpar
1064 ≥ 0.02 Mm−1sr−1 for 0 ≤ z ≤ zAL,

βpar
1064 < 0.02 Mm−1sr−1 for z = zAL + ∆z.

(4.22)

This means, βpar
1064 is always higher or equal to 0.02 Mm−1sr−1 below and at the AL top.

Directly above the AL top (zAL + ∆z), βpar
1064 must be less than 0.02 Mm−1sr−1. ∆z is
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the vertical resolution of the lidar. However, an increase of βpar
1064 at higher altitudes,

e.g., due to clouds or lofted, separated aerosol layers, does not influence the AL top

height determination. Consequently, within the AL (from the ground up to the AL

top), aerosol is continuously present above free-tropospheric-background-aerosol levels

(particle backscatter coefficient above the expected clear air value). The AL top is

thus an absolute criterion for the analysis of the vertical aerosol structure.

Typically the threshold value of βpar
1064 = 0.02 Mm−1sr−1 at, e.g., 4 km agl cor-

responds to a backscatter ratio (total/molecular) of about 1.3 (βmol
1064(4 km) ≈

0.06 Mm−1sr−1). Thus, if the particle backscatter coefficients are well below the corre-

sponding βmol
1064(4 km) ≈ 0.06 Mm−1sr−1, the free troposphere is assumed to be clean.

The threshold value of βpar
1064 = 0.02 Mm−1sr−1 is sufficiently high to be insensitive to

noise in the vertical profile of the particle backscatter coefficient. Consequently, one

can expect that the AL top height retrieval is robust and works well. In addition, the

retrieved AL tops have been inspected by eye to ensure a proper detection of the top

of the aerosol layer. An example of a particle backscatter coefficient profile and the

resulting AL top is shown in Fig. 4.1. The AL top for this example is at 4.61 km and

can be seen as the height agl up to which aerosol can be found continuously above the

surface.

Aerosol scale height

For a simple description of the vertical extent of the aerosol layers the scale height Haer

of aerosols (Turner et al., 2001) is introduced. The scale height is defined as the height

at which the AOD reaches the 63% level (with respect to the total AOD, 100%), i.e.,

37% (1/e) of the entire AOD is caused by the particles above Haer:

1

e
τλ =

∫ zmax

z=Haer

α(z)dz. (4.23)

Although the extinction profile does not follow an exponential decay, the scale height of

aerosols is often used as a good approximation of the vertical extent of aerosols by the

modeling and satellite remote-sensing community (Léon et al., 2009). In contrast to

the AL top, Haer is a relative criterion for the analysis of the vertical aerosol structure

depending on the overall aerosol load in the troposphere. The scale height in this work

is always determined from the particle extinction coefficient profile at 532 nm. This

profile is either directly derived from the N2 Raman channels (Eq. 4.10) or by using

the particle backscatter coefficient (Eq. 4.11 or Eq. 4.12) multiplied with a constant

particle lidar ratio. However, in contrast to the AOD computation by Eq. 4.21, the
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Figure 4.1: Vertical profile of particle backscatter coefficient at 1064 nm on 08 Septem-

ber 2008. AL top, scale height Haer, the height HAOD95, and ECMWF ML top height are

shown.

assumption of the particle lidar ratio does not influence the vertical distribution of the

particle extinction and thus has no influence on the scale height determination.

Figure 4.1 shows an example profile of the particle backscatter coefficient at 1064 nm.

A very complex aerosol structure was observed. The corresponding AOD at 532 nm

(determined with the Raman method) is about 0.28. The scale height Haer is at

1.86 km agl. It is obvious that Haer does not give any information about the real

layering and can only be regarded as a very rough information on the vertical aerosol

distribution. In this example, Haer is very close to the strongest gradient in the particle

backscatter coefficient profile. However, this was not observed in other lidar measure-

ments and must be seen as a coincidence, because the 63% threshold has no relation

to mixing-layer processes.

Because Haer is not sufficient for aerosol structure analysis in the tropics, another

height HAOD95 is introduced. At this height, the AOD reaches the 95% level (with

respect to the total AOD, 100%), so that only 5% of the entire AOD are caused by

particles above HAOD95. For the example case shown in Fig. 4.1, HAOD95 is 3.06 km

and thus represents well the top of the major aerosol plume.
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Mixing-layer top height

The determination of ML top height by lidar was not possible for the measurements

presented here, because of the very complex vertical aerosol structure typical in the

tropics (as discussed already in the beginning of this section). Therefore, the ML

top as derived from the global simulation of ECMWF1 is used in this work. The

retrieval of the ML top by the model2 is based on the analysis of the vertical profiles

of meteorological stability parameter (e.g., Baars et al., 2008) which are computed

from thermodynamic quantities like temperature and wind. The ML top height was

provided in the frame of EUCAARI for the Brazilian site by the Finish Meteorological

Institute.3 The ML-top value used for the lidar site was interpolated from the four

closest grid points. Even if this modeled quantity will not perfectly reflect the reality,

it gives a very good impression about up to which height surface-forced mixing can

be expected at this tropical rain forest site. The maximum daytime ML top height

from the day before the measurement is used as representative for the night-time lidar

measurements. Consequently, one has to assume that the maximum daytime ML top

is the height up to which aerosol was mixed upwards. Deposition of aerosol has to be

neglected for the time between the collapse of the convective ML and the time of the

lidar measurement.

The ECMWF ML top height is as well indicated in Fig. 4.1 in light blue. The strongest

gradient in aerosol backscatter is in the same height range as the ML top height.

Assuming the height region with the strong gradient to be the real top of the ML on

the day before, one can conclude that the ECMWF ML top height is a good indicator

for the strength of mixing at the Amazonian lidar site. However, a clear gradient in

the vertical backscatter profile like in this case is very rare for most lidar observations.

Hence, the ML top height as derived from ECMWF is used in the following when

referring to the ML top. Then, always the maximum ML top height from the day

before the measurement is used.

4.2.6 Depolarization ratio

With PollyXT , the volume and the particle linear depolarization ratio at 355 nm can

be determined by using Eq. 4.2 and Eq. 4.8 with the polarization lidar method (Mu-

rayama et al., 1999; Cairo et al., 1999; Freudenthaler et al., 2009). In this work, the

1more information: http://www.ecmwf.int/about/forecasts.html
2more information: http://www.ecmwf.int/research/ifsdocs/CY31r1/index.html
3Contact: Mika Komppula (Mika.Komppula@fmi.fi)
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term depolarization ratio always refers to the depolarization with respect to linearly

polarized emitted light. Therefore, in the following, the terms volume depolarization

ratio and particle depolarization ratio are used without explicitly stating “linearly”.

The volume depolarization ratio is defined as:

δvol
λ (z) =

⊥βλ(z)
‖βλ(z)

=
⊥βmol

λ (z) + ⊥βpar
λ (z)

‖βmol
λ (z) + ‖βpar

λ (z)
. (4.24)

The superscripts ‖ and ⊥ denote the parallel and orthogonal polarization plane of the

received light with respect to the plane of polarization of the linear-polarized emitted

laser light, respectively. The particle depolarization ratio is defined analogously:

δpar
λ (z) =

⊥βpar
λ (z)

‖βpar
λ (z)

, (4.25)

as well as the molecular depolarization ratio:

δmol
λ (z) =

⊥βmol
λ (z)

‖βmol
λ (z)

. (4.26)

With PollyXT , the unpolarized backscattered light (no superscript) and the cross-

polarized backscattered light (superscript ⊥) at 355 nm is measured and used for

the determination of the depolarization ratio. The volume depolarization ratio is

calculated by

δvol
λ (z) =

Cδ
λ −

⊥Pλ(z)
Pλ(z)

Dλ
⊥Pλ(z)
Pλ(z)

− ⊥DλCδ
λ

, (4.27)

where Cδ
λ is a calibration constant which is determined for measurements in particle-

free atmospheric regions (Grein, 2006). ⊥Pλ(z) and Pλ(z) are the signals received from

cross-polarized and unpolarized backscattered light, respectively. Dλ and ⊥Dλ are the

corresponding transmission ratios which describe the ratio of the transmission efficien-

cies of cross-polarized and parallel light for each detection channel. The determination

of the transmission ratio for PollyXT is described in Sec. 5.2.1. With the assumption

of only molecular scattering (i.e., δvol
λ (z0) = δmol

λ (z0)) at the height z0, the calibration

constant can be calculated using

Cδ
λ =

⊥Pλ(z0)
Pλ(z0)

[
1 + δmol

λ (z0)Dλ

]
1 + ⊥Dλδmol

λ (z0)
. (4.28)

The calculation of the molecular depolarization ratio δmol
λ for PollyXT is described in

Sec. 5.2.2. After the determination of the volume depolarization ratio, the particle
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depolarization ratio can be obtained by using the particle and molecular backscatter

coefficients (Mattis , 2002):

δpar
λ (z) =

[
δvol
λ (z) + 1

](βmol
λ (z)

[
δmol
λ (z)− δvol

λ (z)
]

βpar
λ (z)

[
1 + δmol

λ (z)
] + 1

)−1

− 1. (4.29)

4.2.7 Smoke-dust separation

Lidar observations of smoke and dust in Brazil are discussed in Sec. 6.1. One method

for analyzing mixed dust-smoke plumes with lidar measurements is described by Tesche

et al. (2009). In this approach, the method for the separation of dust and smoke

particles by means of lidar depolarization measurements is presented. According to

the retrieval, the dust fraction in terms of the particle backscatter coefficient at 532 nm

is given by
βpar

dust

βpar
meas.

(z) =
[δpar

meas.(z)− δpar
smoke](1 + δpar

dust)

(δpar
dust − δ

par
smoke)[1 + δpar

meas.(z)]
. (4.30)

βpar
dust/β

par
meas.(z) is the dust fraction defined as the ratio of the dust-related and measured

particle backscatter coefficient, respectively. δpar
meas.(z) is the measured particle depo-

larization ratio profile, and δpar
dust and δpar

smoke are the respective particle depolarization

ratio values for dust and smoke.

In the case of PollyXT , the particle depolarization ratio is measured at 355 nm. Thus,

the corresponding depolarization values for dust and smoke at this wavelength need

to be known. According to Groß et al. (2011), the particle depolarization ratio at

355 nm for dust is δpar
dust = 0.25 ± 0.03. For the particle depolarization ratio of pure

smoke, no consistent values are given in the literature. Heese and Wiegner (2008) re-

port from measurements in the African Savanna that the particle depolarization ratio

of BBA is less than 0.1. Butler et al. (2003) reported a particle depolarization ratio

of 0.035 for Alaskan wildfire smoke observed with airborne lidar. Murayama et al.

(2004) published values of 0.05–0.08 for aged Siberian forest-fire smoke observed over

Tokio, Japan. In contrast, Müller et al. (2005) reported particle depolarization ratios

close to the Rayleigh value (less than 0.03) for aged Siberian forest-fire smoke observed

over Leipzig, Germany. Observations with PollyXT during the dry season in Amazonia

showed that aged BBA does not significantly depolarize the backscattered light. The

particle depolarization ratio was always less than 5% (including uncertainty). Hence,

δpar
smoke = 0.03± 0.02 was assumed for the smoke-dust separation.

The result of the dust-fraction estimation at 355 nm by means of Eq. 4.30 is shown

in Fig. 4.2. As can be seen, a measured particle depolarization ratio of δpar
meas. > 0.2
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Figure 4.2: Dust fraction in dependence of the particle depolarization ratio measured

at 355 nm assuming a dust-smoke mixture. The dust fraction is plotted for a particle

depolarization ratio of aged smoke of δpar
smoke = 0.01, 0.03 (thick blue line), and 0.05.

Vertical error bars indicate the uncertainty due to the assumed particle depolarization

ratio of dust and are plotted for δpar
smoke = 0.03 only.

indicates a very high dust fraction (>80%± 11%). On the other hand, particle depo-

larization ratios of δpar
meas. < 0.1 correspond to a dust fractions less than 30% ± 11%.

The absolute uncertainty of the dust fraction caused by the uncertainty of the used

particle depolarization ratios for dust and smoke is about 11% for all measured particle

depolarization ratios.

4.2.8 Microphysical particle properties from optical particle

properties by inversion

Vertical profiles of microphysical particle properties can be determined from mea-

surements with state-of-the-art 3+2 lidars by “inversion with regularization with con-

straints” (Ansmann and Müller , 2005). A data inversion algorithm (Müller et al.,

1999a,b, 2001; Veselovskii et al., 2002, 2004) was applied to derive the microphysical

particle properties from backscatter coefficients measured at three wavelengths (355,

532, and 1064 nm) and extinction coefficients measured at two wavelengths (355 and

532 nm). The inversion code provides approximations of (volume) size distributions.

These size distributions are subsequently used to calculate particle effective radius,



4.2. LIDAR METHODS 53

volume concentration, surface-area concentration, and the complex refractive index.

In the following, a short description of the inversion concept is given. Details are dis-

cussed in Ansmann and Müller (2005).

Atmospheric particle size distributions (PSD) are described in the inversion code as a

combination of one or more logarithmic-normal distributions (Hinds , 1999)

dn(r) =
nt√

2π lnσ
exp

[
−(ln r − ln rmod)2

2 (lnσ)2

]
d ln r, (4.31)

where dn(r) denotes the number concentration of particles in the radius interval

[ln r; ln r+ d ln r], nt the total number concentration, rmod the mode radius, and σ the

mode width (geometric standard deviation). The surface-area and volume concentra-

tions are retrieved from Eq. 4.31 by multiplication with 4πr2 and 4πr3/3, respectively.

The relationship between the optical input parameter and the microphysical properties

is described by a set of Fredholm integral equations,

gi =

∫ rmax

rmin

Ki(r,m, λi, s)v(r)dr + εexp
i , (4.32)

which cannot be solved analytically. gi denotes the optical input data (particle

backscatter coefficient or particle extinction coefficient) at a certain wavelength. The

kernel efficiency (function) Ki depends on particle radius r, the complex refractive

index m, the wavelength of the interacting light λi, and the shape s of the particles.

Ki is weighted with the volume-concentration PSD function v(r). εexp
i accounts for

the measurement error in the optical input data set. The integration of Eq. 4.32 is

performed for a certain size range of the PSD from rmin to rmax (e.g., in the case of the

Brazilian observations from 100 nm to 10 µm). For spherical particles with the geo-

metric cross-section πr2, the kernel function Ki can be calculated with the respective

backscatter or extinction efficiencies Qi(r,m, λi) (Bohren and Huffman, 1983):

Ki(r,m, λi) =
3

4r
Qi(r,m, λi) . (4.33)

Equation 4.32 represents an ill-posed, non-linear problem that must be solved numer-

ically. Since the problem is ill-posed, the mathematically correct solutions do not

necessarily need to be physically useful. Due to the non-linearity of these integral

equations, the solutions of the problem are very sensitive to changes in the input data

and numerical instability can occur. The instability of the solutions can only be con-

trolled by introducing meaningful boundary conditions. To minimize the number of

a priori assumptions in the retrieval, n(r) is described as a combination of weighted
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triangular base functions (Müller et al., 1999a). The number of base functions depends

on the PSD. Three base functions are sufficient to reproduce one particle mode. If the

number of base functions is too large, the inversion procedure might become unstable.

In the version of the algorithm applied here, eight base functions are used.

Because the use of the base functions may still lead to unstable or physically meaning-

less solutions, regularization is used to reduce the number of solutions. Regularization

sorts out solutions of the inversion algorithm which are mathematically possible but

physically meaningless, e.g., only positive solutions of n(r) are allowed. Despite this

regularization, only a fraction of the solutions of the inversion algorithm represents

trustworthy, physically useful results for a given input data set. Thus, a further man-

ual careful analysis of the inversion output is necessary. For example, solutions with

a very high number of small particles (radius less than, e.g., 50 nm) are neglected.

Finally, out of thousands of mathematical inversion results only several hundred trust-

worthy solutions remain. These solutions are averaged and further properties, e.g.,

the mean particle number concentration or the mean complex refractive index, are

obtained. The surface-area weighted mean, or effective, radius is defined as

reff =

∫
n(r)r3dr∫
n(r)r2dr

(4.34)

and used as a measure of mean particle size. The surface-area concentration a and the

volume concentration v are calculated to

a = 4π

∫
n(r)r2dr (4.35)

and

v =
4

3
π

∫
n(r)r3dr, (4.36)

respectively. Thus, the effective radius is

reff =
3v

a
. (4.37)

Finally, the retrieved results in terms of the volume size distribution and complex

refractive index are used to calculate the particle SSA at 532 nm wavelength with a

Mie-scattering code (Bohren and Huffman, 1983).
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Chapter 5

Instrument characterization and

quality assurance

The design and construction of PollyXT lasted until mid of 2007. The construction

was completed just a few weeks before the shipment of the system to Brazil. Thus,

results presented here are the first ones made with this new lidar. Performance tests

of the system are essential to assure a good data quality. Hence, several hardware

and software tests were made and resulting corrections were applied. These tests are

explained in the following. Some of them were made in Brazil during the campaign,

some were made after the arrival of the system back home in Germany.

First of all, the overlap between the laser beam and the field of view of the telescope is

discussed. The determination of the overlap function for PollyXT and resulting errors

are explained. Secondly, the polarization characteristics of PollyXT are presented.

The problem of polarization cross-talk within the system and the applied correction

is described. Next, the data retrieval software, which was specifically developed for

PollyXT in the framework of this thesis, was tested according to EARLINET (European

Aerosol Research LIdar NETwork) standards. Finally, a comparison with other lidars

during the EARLI09 campaign in Leipzig (Freudenthaler et al., 2010) and a direct

comparison to AERONET measurements in Brazil are presented. Correct photon

counting was also a major issue during the measurements in Brazil. The corresponding

dark-measurement test is presented in Appendix B.
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5.1 Overlap characteristics

The adjustment of the so-called overlap is a crucial feature when performing lidar

measurements. The overlap function O(z), which describes the fraction of the laser

beam within the receiver field of view over height, influences directly the measured

signals (see Sec. 4.1, in particular Eq. 4.2 and Eq. 4.3). Theoretical calculations prior

to the construction of PollyXT led to the result that the full overlap (O(z) = 1) is

reached at 1500 m above the lidar. In PollyXT , the laser beam is adjusted to the

receiver field of view by small, motor-controlled changes in the position of the beam

expander with the help of a camera (see Sec. 3.2). This overlap adjustment has to be

done, e.g., after each maintenance of the laser head. But also temperature changes

within the lidar can lead to maladjustments of the laser beam due to thermal effects

on the opto-mechanical mountings. Therefore, many different overlap functions were

obtained for different measurement periods in Brazil. These overlap functions were

calculated from the respective Raman signals at 355 and 532 nm using the method

described by Wandinger and Ansmann (2002). For the 1064-nm channel no overlap

function can be calculated, because no corresponding Raman signal is available at

this wavelength.

An overview of all experimentally derived overlap functions of the Brazilian mea-

surements is shown in Fig. 5.1. O(z) for 355 and 532 nm is presented. The overlap

function derived in Leipzig under very clean conditions for a well-aligned PollyXT

setup is drawn in addition (thick red line) and can be regarded as the ideal overlap

function. Obviously, O(z) is different for 355 and 532 nm, so that the overlap

characteristics for the different wavelengths are not unique. In general, the overlap

is complete (O(z) = 1) at 1500 m as calculated theoretically. However, the shape of

the overlap functions differs slightly during the measurement period which is mainly

caused by temperature fluctuations inside the lidar. In one case of a maladjusted

overlap (the dark green line in Fig. 5.1), the full overlap is reached only at 2300 m.

Using a wrong overlap function can lead to large errors in the retrieval of the

particle extinction coefficient with the Raman method and the particle backscatter

coefficient with the Klett method. The estimation of the resulting error for the

particle extinction coefficient is shown in the following. Reformulation of Eq. 4.10
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Figure 5.1: All determined overlap functions for the measurement period in Brazil for

355 nm (left) and 532 nm (right). The thick red line shows the overlap function measured

in Leipzig under very clean conditions on 13 January 2009 (this is the reference).

leads to

αpar
λ0

=
d
dz

lnN(z) + d
dz

lnO(z)− d
dz

(2 ln z)− d
dz

lnPRa(z)− αmol
λ0
− αmol

λRa

1 +
(
λ0
λRa

)̊aα
. (5.1)

To estimate the effect of the overlap function O(z) on the extinction coefficient re-

trieval, one has to analyze the term

d
dz

lnO(z)

1 +
(
λ0
λRa

)̊aα
. (5.2)

This term was calculated for all overlap functions shown in Fig. 5.1 with åα = 1.

The mean effect, i.e., the absolute contribution of Term 5.2 (and thus of O(z)) to



58 QUALITY ASSURANCE

0 100 200 300

Absolute error of extinction coeff. [Mm-1]

0

500

1000

1500

2000

2500

R
a

n
g

e
 [
m

]

0 0.2 0.4 0.6 0.8 1

Overlap function

750 m smoothing

210 m smoothing

90 m smoothing

Mean ovlp. function

0 1000 2000 3000 10000

Extinction coeff. due to ovlp. function [Mm-1]

0

500

1000

1500

2000

2500

R
a

n
g

e
 [
m

]

0 0.2 0.4 0.6 0.8 1

Overlap function

750 m smoothing

210 m smoothing

90 m smoothing

Mean ovlp. function

3000 800020000

Figure 5.2: Left: Absolute contribution of the mean overlap function to the particle

extinction coefficient at 532 nm for different vertical smoothing lengths. Right: Absolute

error introduced by O(z) to the particle extinction coefficient at 532 nm determined for

different smoothing lengths. The mean overlap function with the corresponding standard

deviation (black line) is shown in addition in both graphs.

the particle extinction coefficient at 532 nm is shown in Fig. 5.2, left. Different

vertical smoothing lengths are applied. In addition, the mean overlap function and

the corresponding standard deviation is shown. For the typical smoothing length of

750 m (green line) for the particle extinction coefficient, an artificial contribution

of more than 3000 Mm−1 is introduced to the lowermost part of the lidar profile.

At 1000 m, the contribution of O(z) to the particle extinction coefficient is about

170 Mm−1. For this smoothing length, the overlap correction affects the extinction

profile up to 1920 m. In contrast, if the extinction coefficient is determined with

a vertical resolution of 90 m only (blue line in Fig. 5.2), a maximum contribution

due to O(z) of 20000 Mm−1 was found for the lowermost height at 100 m. For this

smoothing length, the particle extinction coefficient is affected by O(z) only up to

1600 m.

To estimate the error which is introduced by the overlap correction to the particle

extinction coefficient, the standard deviation of the solutions of Term 5.2 for all

overlap functions is shown in Fig. 5.2, right. The standard deviation of Term 5.2 is

assumed to be a good estimation of the standard error introduced by the overlap
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correction, since it reflects the variability of O(z) for PollyXT . For 750 m vertical

smoothing, an error of more than 250 Mm−1 is calculated at the lowermost height at

400 m. At 1000 m, the error is still of the order of 50 Mm−1. At 1500 m, the error

is comparably low with about 10 Mm−1. For 90 m vertical smoothing, a maximum

absolute error for the lowermost height at 100 m of about 7500 Mm−1 is calculated.

At 400 m, the error is about 180 Mm−1 and thus lower than for a vertical smoothing

of 750 m. At 1000 m, an error of about 70 Mm−1 is determined which is higher than

the one for 750 m vertical smoothing. Thus, vertical smoothing has to be applied

under consideration of the overlap correction effect.

However, the overlap determination was done carefully for every measurement period

after changes within the PollyXT . This means, after every setup change a new

overlap function was calculated. Thus, the real error of the extinction coefficient

is assumed to be much lower than the error presented here. However, a more

realistic error estimation for the overlap correction is not possible, because the

actual overlap function for a single measurement is usually unknown. Consequently,

one has to be very careful when using extinction-coefficient-related data below 1000 m.

Another approach to test the overlap characteristics of a lidar is the so-called

telecover test (Freudenthaler , 2008). This test was performed in Leipzig after the

EUCAARI campaign. For this test, only one quarter of the telescope (quadrant) is

used for receiving the backscatter signals. This is repeated four times for all quadrants

until the whole telescope is characterized. The full overlap is reached at the height at

which all quadrants receive equal signal. The results of the performed test show that

the full overlap is reached at different heights for the UV channels1 (full overlap at

2.0 km) and the VIS channels2 (full overlap at 1.5 km). This finding is in agreement

with the overlap functions calculated for the Brazil campaign and shows that different

overlap functions have to be used for the correction of the UV and VIS channels.

Nevertheless, this test also revealed a good performance for all tested channels, i.e.,

no further optical problems could be detected.

1355, 355s, 387
2532, 607
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5.2 Polarization characterization and correction

Important products of PollyXT are the vertical profiles of the volume and particle

depolarization ratios. For the proper determination of these profiles, a high-quality

characterization of the instrument concerning polarization effects is necessary. The

characterization tests of the receiver optics of PollyXT concerning polarization effects

following Mattis et al. (2009) and the applied correction schemes are described in

Sec. 5.2.1. In addition, the proper calculation of the atmospheric molecular depolar-

ization ratio is discussed in Sec. 5.2.2. This value is dependent on the bandwidth of the

used interference filter and wrong assumptions can lead to large errors in the particle

depolarization ratio. The purity in terms of linear polarization of the emitted laser

light was also tested and is presented in Appendix C. In this Section, the receiving

channels are denoted as presented in Table 3.1, i.e., channels receiving unpolarized

light have no addition and channels receiving perpendicular polarized light have the

channel addition “s”. For example, the channel receiving unpolarized light at 355 nm

is denoted with 355 whereas the channel receiving only cross-polarized light is denoted

as 355s.

5.2.1 Transmission ratios and corresponding signal correction

Systematic errors occur in the presence of depolarizing scatterers for the determination

of the particle backscatter coefficient, the particle extinction coefficient, and the depo-

larization ratio due to polarization-dependent receiver transmission. To correct these

effects and to determine the depolarization ratio, the transmission ratio D for each

detection channel needs to be known (see Sec. 4.2.6). The transmission ratio is defined

as the ratio of the transmission efficiency η of parallel-polarized (superscript ‖) and

perpendicular-polarized (superscript ⊥) light with respect to the plane of polarization

of the emitted laser light (Mattis , 2002; Mattis et al., 2009):

D =
⊥η
‖η
. (5.3)

To determine D for each channel of the receiver unit of PollyXT , a polarization test

was performed. The experimental setup of this test is shown in Fig. 5.3. Unpolarized

light from a combined deuterium and halogen light source (getLight-DHS by Sentronic

GmbH, Germany) was directed via an optical fiber through a polarization filter onto

the main mirror of PollyXT . From the main mirror the white light was reflected into
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Figure 5.3: Experimental setup for the determination of the transmission ratios. The

measurement apparatus was installed on the roof of PollyXT . Via an optical fiber (red)

light is directed through a motorized polarization filter (black tube). The linear-polarized

light is then directed onto the main mirror of the telescope and signals are detected by

the DAQ. The optical paths are indicated by overlaid colored lines (see Sec. 3.2).
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Figure 5.4: Results from the transmission efficiencies test for several detection channels

(355, 355s, 532, 532s) as a function of the polarization plane angle. Counts were summed

up over 3000 shots. The polarization filter plane angle must not agree with optical axis

of PollyXT .

the receiver optics, where it is spectrally separated by the beamsplitters and inter-

ference filters and directed to the detection channels. Photons were counted by the

PMTs and data recorded by the DAQ as during usual measurements. The rotatable

polarization filter was housed in a stable apparatus. The transmission efficiencies for

parallel or cross-polarized light were retrieved for each tested channel by changing the

polarization state of the incoming light by rotating the polarization filter. The rotation

was performed with a remotely controlled motor which leads to exact and reproducible

results. The test was carried out for several polarization angles from 0◦ to 350◦. To

obtain a good signal-to-noise ratio for each polarization plane during the experiment,

photons counts were summed up over 3000 simulated shots and over all range bins

(16384).

The results are shown in Fig. 5.4 for the 355, 355s, 532, and 532s channels. The 532s

channel was not installed during the Brazil campaign but at the time of the depolariza-

tion test. Note that the polarization plane of the polarization filter in the 0◦-position

is not parallel to the polarization plane of the emitted laser light due to difficulties

in the experimental setup. Thus, the minima and maxima of the curves appear at

arbitrary absolute angles. The frequency doubling and tripling of the emitted light

causes a polarization plane difference between 355 and 532 nm of 90◦. Therefore, the

orientation of the depolarization filters in the lidar receiver is different and an angu-

lar shift of exactly 90◦ is observed for the depolarization channels (355s and 532s) in

Fig. 5.4.
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A clear dependence on the polarization state of the light is obvious for the 355s and

532s channels. But also effects in dependence of the polarization plane were observed

for the 355 and 532 channels. For an ideal system, a high contrast (i.e., high ratio of

counts in the maxima and minima) should be observed for the depolarization chan-

nels and no dependence on the polarization state should be measured for the channels

receiving unpolarized light.

To determine the transmission ratio for each detection channel, a sinusoidal fit

y(x) = A + B sin(x−xc
w

) (with A=offset, B=amplitude, xc=angle offset, w = period,

y=counts, x=measurement angle) was applied to the measured counts for the different

polarization angles in each channel. The transmission ratio for each channel can then

be calculated with the amplitude and the offset to Dλ = A+B
A−B and thus independent

of the angular parameter xc and w. This yields for the tested channels to:

D355
⊥D355 D387 D532

⊥D532
totD607 D1064

3.07± 0.01 1495± 670 0.965± 0.002 0.734± 0.005 570± 275 1.05± 0.04 0.95± 0.03

The emitted laser light at 1064 nm is circular polarized, thus the value of this channel

- which was characterized in an earlier measurement in Leipzig in 2009 - is not im-

portant for the data analysis but shown for completeness. The relative high errors for

the transmission ratio of the 355s and 532s channels are the result of the strong noise

influence during measurements at a very low count rate (e.g., for 355s at about 100◦ ).

However, independent calibration of the volume depolarization ratio to cirrus clouds,

for which 0.3 < δvol < 0.7 is expected (Sassen and Benson, 2001), has shown that
⊥D355 = 200 has to be used to achieve the expected volume depolarization ratio. The

reason for this disagreement could be that the emitted laser light is not 100% linearly

polarized. According to Eq. 4.27, one can account for such impurity by decreasing
⊥D355. Tests of the purity of the emitted laser light in terms of linear polarization (see

Appendix C) have shown that the purity is better than 95%. However, measurement

errors did not allow the determination of the purity in terms of linear polarization

more precisely. Thus, the calibration to cirrus is the most robust method for the de-

termination of a realistic ⊥D355. As a consequence of the difficulties and the resulting

measurement uncertainties in the determination of ⊥D355, PollyXT was redesigned in

2011 and an additionally possibility to calibrate the volume depolarization ratio was

installed (±45◦-method after Freudenthaler et al., 2009). First test measurements with

this new and independent calibration method showed that the volume depolarization

ratio profiles retrieved with ⊥D355 = 200 by Eq. 4.27 are equal to the profiles de-

termined with the ±45◦-method. Thus, the usage of this value leads to trustworthy
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volume depolarization ratio profiles.

As mentioned above, for an ideal system the transmission ratio for channels receiving

unpolarized light is one and for the channels receiving polarized light it should be as

high as possible. This ideal behavior was observed for the 355s, 387, 532s, 607, and

1064 channels. However, the 355 and 532 channels show a clear dependence on the

polarization plane of the incoming light. If the transmission ratio is not equal to 1,

errors in the retrieved backscatter signals occur when depolarizing aerosol is present.

According to Mattis et al. (2009), the error is higher than 5% when the transmission

ratio is below 0.85 or higher than 1.15. Thus, a correction has to be applied to the lidar

signals for the 355 and 532 channels (D355 > 1.15 and D532 < 0.85), when depolarizing

scatterers are present. The correction scheme is different for the 355 channel and the

532 channel, because depolarization was measured only at 355 nm during the Brazil

campaign. The correction at λ = 355 nm is done by calculating a height-dependent

correction factor (Grein, 2006; Mattis et al., 2009)

χ(z) =
1 +D355δ

vol
355(z)

1 + δvol
355(z)

=
Pmeas.

355 (z)

P corr.
355 (z)

(5.4)

from the volume depolarization ratio δmol
λ (z) and the transmission ratio Dλ. The

measured signal Pmeas.
λ (z) is then corrected with

P corr.
355 (z) =

Pmeas.
355 (z)

χ(z)
. (5.5)

For the correction of the measured signal at 532 nm, the volume depolarization ratio

at 532 nm is necessary. With the assumption of a wavelength-independent particle

depolarization ratio (δpar
355(z) = δpar

532(z)) the volume depolarization ratio is calculated

to (Tesche et al., 2009)

δvol
532(z) =

βmol
532 (z)δmol

532 (z)[δpar
532(z) + 1] + βpar

532(z)δpar
532(z)[δmol

532 (z) + 1]

βmol
532 (z)[(δpar

532(z) + 1] + βpar
532(z)[δmol

532 (z) + 1]
. (5.6)

For βpar
532(z), a “first guess” profile with the uncorrected signal is used. After applying

the correction (Eq. 5.5) to the signal, the particle backscatter coefficient is calculated

again. With this new profile the volume depolarization ratio at 532 nm and hence the

correction factor is recalculated and again applied to the signal. This iterative process

is done until no significant change in the backscatter profile is observed anymore.
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Figure 5.5: Filter transmission (black dots) for one UV filter as used in PollyXT and

rotational Raman backscatter coefficients for 173.1 K (left) and 273.1 K (right).

5.2.2 Filter-dependent molecular depolarization

The molecular depolarization ratio of air δmol
λ that is measured depends on the band

widths of the interference filters used in the lidar (e.g., Behrendt and Nakamura, 2002).

The lidar receives both backscatter signal of the Cabannes line and the rotational Ra-

man lines of the molecules. The Cabannes line contributes with 97.3% to the received

total molecular backscattered light whereas the rotational Raman lines contribute only

with 2.7%. However, the Cabannes and rotational Raman lines cause a very different

polarization. Whereas the Cabannes line induces a depolarization ratio of 0.00395,

the rotational Raman lines have a depolarization ratio of 0.75. Hence, when consid-

ering depolarization, the rotational Raman lines cannot be neglected. The spectral

distribution of these lines depends on the air temperature. If the filter band width in

the receiver is smaller than a certain value, not all of the rotational Raman lines are

detected. Thus, when using narrow-band filters also the detected molecular depolar-

ization ratio is temperature-dependent. The temperature dependence of the molecular

depolarization ratio can be calculated, if the filter transmission curve is known (see

Wandinger , 2005a). The filter transmission curves for each individual filter of PollyXT

were provided by the manufacturer BARR Associates, Inc. (Westford, USA).

For PollyXT , a filter band width of 1.0 nm in the UV channels is used (cf. Table 3.1).

Figure 5.5 shows the transmission curve of such a filter at 355 nm and the rotational
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ratio at 355 nm as calculated from equal particle backscatter coefficient and volume

depolarization ratio profiles but different molecular depolarization ratio. An example

measurement from 25 May 2009 in Leipzig is shown.

Raman backscatter spectra of nitrogen and oxygen for two different air temperatures.3

It is obvious that rotational Raman lines partly contribute to the received signal at

355 nm and thus influence molecular depolarization for this filter type. Consequently,

the molecular depolarization ratio as observed with PollyXT is a function of air tem-

perature.

Figure 5.6, left, shows the calculated molecular depolarization ratio for PollyXT at

355 nm in dependence of the temperature. A slight temperature dependence could be

obtained. Values for the measured molecular depolarization ratio for this filter type

(1.0 nm band width) range from 0.008 at 173 K to 0.007 at 273 K. The molecular

depolarization ratio measured with PollyXT is consequently only about half the value

of the depolarization ratio measured with a broad-band filter transmitting the entire

rotational Raman spectrum (depolarization ratio of 0.0155).

The use of the molecular depolarization ratio is especially critical for the calculation

of the particle depolarization ratio (Eq. 4.29). A wrong molecular depolarization ra-

tio can lead to significant deviations in the particle depolarization ratio as shown for

an example case in Fig. 5.6, right. Here, the particle depolarization ratio in depen-

3calculated with a Fortran code provided by Ulla Wandinger, IfT, Germany

(E-mail: ulla@tropos.de)
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dence on three different molecular depolarization ratios for fixed profiles of volume

depolarization ratio and particle backscatter coefficient is shown. It is obvious that

the particle depolarization ratio depends significantly on the molecular depolarization

ratio. Hence, the usage of the correct value is essential for the retrieval of the particle

depolarization ratio.

5.3 Data-analysis algorithm check

The data retrieval software for PollyXT was newly developed in the framework of Baars

(2007) and this PhD thesis. To ensure a proper data analysis the performance of the

software package had to be tested independently. Therefore, a test with artificial lidar

profiles developed in the framework of EARLINET was made (Pappalardo et al., 2004;

Böckmann et al., 2004; Böckmann and Pappalardo, 2007). For this test, the profiles

of the particle backscatter coefficient and the particle extinction coefficient had to be

calculated from the raw data without a priori knowledge of the aerosol type and the

vertical aerosol distribution. The PollyXT algorithm and the algorithms from 13 other

groups participated in several comparison stages. The results were administrated

by independent referees. Figure 5.7 shows the result of the intercomparison for the

particle backscatter and extinction coefficients at 355 and 532 nm determined with

the Raman method at stage III (temperature and pressure profiles were given). The

PollyXT algorithm is marked as A5 (deep blue line – the results from the other groups

were handled anonymously). The PollyXT algorithm performed well for the Raman

method and is close to the real solution (input) for the particle backscatter coefficient

and the particle extinction coefficient at both wavelengths. No overlap correction was

performed at this stage, thus extinction coefficient values below 1 km differ significantly

from the real solution. In reference to official EARLINET criteria, one can conclude

that the newly designed algorithm software is of high quality and performs excellent

for the retrieval of optical properties from PollyXT measurements.
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dars in the frame of EARLINET (Böckmann and Pappalardo, 2007). The algorithm for

PollyXT is marked as A5 (deep blue line).
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5.4 Lidar intercomparison during EARLI09

In May 2009 the EARLI09 (EArlinet Reference Lidar Intercomparison 2009) campaign

took place in Leipzig in the framework of EARLINET. For this campaign, 13 lidars

from all over Europe were installed at IfT and intercomparison measurements for more

than four weeks were performed. The results from the intercomparison campaign are

presented by Freudenthaler et al. (2010). PollyXT took also part in this campaign.

After its transport from Brazil back to Leipzig, no changes in the lidar system

were made. Thus, measurements during EARLI09 could be performed with the

same system setup as during the observations in the Amazon Basin. To assure an

independent comparison, PollyXT measurements are not compared to measurements

of IfT’s EARLINET lidar MARTHA but to two lidars of the University of Munich.

Comparisons of PollyXTwith POLIS (Raman and polarization lidar at 355 nm, Heese

et al., 2002; Groß et al., 2008) and MULIS (3+2 Raman lidar at 355, 532, 1064 nm,

Freudenthaler et al., 2009) are shown. These two lidars are EARLINET certified

and have been used already in several field campaigns (e.g., AMMA4 and SAMUM5

1 and 2). The data of the two Munich lidars were independently analyzed at the

University of Munich with own software.6 In contrast, PollyXT data was analyzed as

for the Amazonian measurements according to the methods described in Chapter 4

and the correction schemes introduced previously in this Chapter. Thus, independent

intercomparison of the lidars is given.

The comparison of the vertical aerosol profiles of the three lidars was performed for

25 May 2009. On that day, Saharan dust was observed over Leipzig. The temporal

development of the range-corrected signal between 1200 and 2400 UTC is shown in

Fig. 5.8. A complex vertical aerosol layer structure up to 6 km was present on that

day. After 2000 UTC, cirrus occurred above 11 km. The vertical aerosol structure

was not stable over the whole period, hence, short intervals for the data analysis

had to be chosen. For the comparison of the particle backscatter coefficient and the

particle extinction coefficient, data from MULIS were used. Both MULIS and PollyXT

profiles are determined with the Raman method (Sec. 4.2.1). For the depolarization

comparison, measurements with Munich’s depolarization lidar POLIS are presented.

To achieve a temporal overlap of the measurements, depolarization profiles are

4African Monsoon Multidisciplinary Analyses (Redelsperger et al., 2006)
5Saharan Mineral Dust Experiment (Heintzenberg , 2009)
6data provided by Silke Groß and Volker Freudenthaler, Meteorological Institute of the University

of Munich (E-mail: volker.freudenthaler@physik.uni-muenchen.de)
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Figure 5.8: Temporal development of the range-corrected signal of PollyXT at 1064 nm

between 1200 UTC and 2400 UTC on 25 May 2009. The red rectangles show the inter-

comparison periods.

compared for the time period between 1730 and 1930 UTC while particle backscatter

coefficient and particle extinction coefficient profiles are compared between 2100 and

2300 UTC. An overlap correction was applied to profiles of PollyXT . Compared to

PollyXT , the overlap of POLIS and MULIS is complete (O(z) = 1) at a much lower

height. Thus, no overlap correction had to be applied for the Munich lidar profiles.

Figure 5.9 shows the particle backscatter coefficient profiles at 355, 532, and 1064 nm

for PollyXTand MULIS. In addition, the particle backscatter coefficient at 355 nm

from PollyXT as derived without depolarization correction is presented. Concerning

the vertical profiles of the particle backscatter coefficient derived with the Raman

method, a reasonable agreement between the two instruments was achieved. All

particle backscatter coefficient profiles show the same relative profile shape and

thus measure the same aerosol structure. Absolute values differ depending on the

wavelength and the height. A good agreement was found for the particle backscatter

coefficient at 532 nm. At 355 nm, the depolarization-corrected particle backscatter

coefficient agrees well with the MULIS particle backscatter coefficient below 3 km,

where most of the aerosol was trapped. Above 3 km, slight differences were obtained.

The particle backscatter coefficient without depolarization correction is clearly
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Figure 5.9: Comparison of the particle backscatter coefficient between PollyXT and

MULIS (University of Munich) on 25 May 2009 during EARLI09. A vertical smoothing

of 90 m and 30 m was applied for PollyXT and MULIS, respectively.

too high in regions of Saharan dust (2–4 km). This shows the importance of the

depolarization correction when depolarizing aerosol is present. On the other hand,

it also shows that the depolarization correction works very well, since the particle

backscatter coefficient of the affected channels (355 and 532 nm) fit very well to

measurements of MULIS. At 1064 nm, a relatively large discrepancy was observed.

However, one has to keep in mind that the particle backscatter coefficient at 1064 nm

is very sensitive to the chosen reference value. When altering the reference value

for the PollyXT profile, a perfect agreement with the Munich measurements can be

achieved. However, the particle backscatter coefficients of PollyXT were calibrated

within a cirrus cloud at 11–13 km. Inside the cirrus, a wavelength-independent

particle backscatter coefficient is assumed. This calibration is the most robust method

for the retrieval of the particle backscatter coefficient at 1064 nm. Therefore, the

resulting profile of PollyXT with this calibration method is shown here and may

explain the large deviation of the absolute values. Below 600 m, a large discrepancy

between the two lidars was observed for all wavelengths, which is caused by the

different overlap functions.



72 QUALITY ASSURANCE

25 05 2009, 2100-2300 UTC
PollyXT<-> MULIS

PollyXT 355 nm

PollyXT 532 nm

MULIS 355 nm

MULIS 532 nm

0 50 100 150 200

Extinction coeff. [Mm-1]

0

1

2

3

4

5

H
e

ig
h

t 
[k

m
]

EARLI09, Leipzig, Germany

Figure 5.10: Comparison of the particle extinction coefficient of PollyXT and MULIS

(University of Munich) on 25 May 2009 during EARLI09. A vertical smoothing of 270 m

and 82.5 m was applied for PollyXT and MULIS, respectively.

The comparison of the extinction coefficient (Fig. 5.10) shows also very promising

results. The vertical profile shape is the same for both lidars at both wavelengths.

The retrieved profile of the particle extinction coefficient of PollyXT at 355 nm is

much noisier than the one of MULIS while at 532 nm it is the other way around.

Nevertheless, a very satisfying agreement was observed for the particle extinction

coefficient at 355 nm below 2 km. Almost identical absolute values were measured.

This also shows that the overlap correction as described before works very well for

measurements with PollyXT . Below 600 m, an overlap correction for PollyXT is not

possible anymore and thus no comparison could be made. Above 2000 m, PollyXT

measured higher values than MULIS. The reason for this behavior is unclear, but

could be due to the higher noise level. At 532 nm, the agreement of the two lidars

is very good in the major aerosol layer between 1000 and 2000 m. Below 1000 m,

discrepancies occur which are most obviously caused by the overlap problem. Above

the major aerosol layer (>2 km), the agreement between the two lidars is acceptable,

since due to the high noise level of MULIS a comparison is rather difficult.

The results of the comparison of the depolarization ratios at 355 nm between
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Figure 5.11: Comparison of the volume and particle depolarization ratios between

PollyXT and POLIS (University of Munich) on 25 May 2009 during EARLI09. A vertical

smoothing of 90 m and 82.5 m was applied for PollyXT and POLIS, respectively.

PollyXT and POLIS are shown in Fig. 5.11. Different calibration methods have

been used to retrieve the volume depolarization ratio from POLIS (calibration

after Freudenthaler et al., 2009) and PollyXT (calibration as described in Sec. 4.2.6

and Sec. 5.2). However, a very good agreement for the volume depolarization

ratio was achieved. Obviously, both calibration methods work well and can be

applied for lidar depolarization measurements. The comparison of the particle

depolarization ratio profile shows also a reasonable agreement between POLIS and

PollyXT . Both profiles are noisy due to the input of two separately determined

profiles (particle backscatter coefficient as derived with the Klett method and

volume depolarization ratio). To high errors for the determination of the particle

depolarization ratio with POLIS are the reason for data gaps between 0.8–1.1 km

and 2–2.6 km. Nevertheless, the profile shape is the same for the both independently

determined particle depolarization ratios and also the absolute values are nearly equal.

Finally, one can conclude that PollyXT has a good performance. The retrieved

quantities of particle backscatter coefficient, particle extinction coefficient, and
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Figure 5.12: Comparison of AOD as measured with lidar and AERONET sun photome-

ter. The 1:1 line is shown in addition (black thin line). Dotted lines indicate a deviation

of 0.05.

particle depolarization ratios are trustworthy when all corrections as presented in this

Chapter are applied.

5.5 Comparison with sun photometer

The determination of the AOD with PollyXT is based on the assumption of a well-

mixed planetary boundary layer with a constant particle extinction coefficient in the

lowermost part of the lidar profile. To quantify the errors resulting from this as-

sumption, a comparison to AERONET sun photometer measurements performed at

the lidar field site7 is presented in Fig. 5.12. Unfortunately, AERONET sun pho-

tometer measurements were only sporadically available from July to October 2008

(cf. AERONET website, level 2.0 data). Because sun photometer measurements are

carried out at daytime and Raman lidar observations are available at night time only,

one has to assure equal atmospheric conditions for the comparison between the instru-

ments. Consequently, only measurements performed during temporally close intervals

with a low temporal aerosol variability were used for the comparison. As a result of

these requirements, only 12 days (11 days) could be used to compare the lidar-derived

AOD at 532 nm (355 nm) with the sun photometer AOD at 500 nm (340 nm).

7official site name on the AERONET website: Manaus
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The result of the comparison is shown in Fig. 5.12. A good agreement between the

two instruments was found for the UV (340 nm–355 nm) and the visible wavelength

range (VIS, 500 nm–532 nm). Deviations were always less than 0.05 (indicated by the

dashed lines) in the visible wavelength range and less than 0.06 in the UV wavelength

range. The corresponding relative deviation between the AOD measured with the lidar

and the sun photometer was less than 5%–15% at both wavelength ranges. Thus, the

assumption of a well-mixed atmosphere in the lowermost part of the lidar profiles does

not lead to significant errors in the AOD determination with lidar. These findings also

indicate that the extinction profiles retrieved from the Raman lidar measurements are

trustworthy and of good quality.
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Chapter 6

Observations – Part I: Case studies

In this Chapter, the lidar observations made in 2008 are presented and discussed in

form of representative case studies. The different cases provide an overview over the

aerosol conditions which can be observed throughout the year in Amazonia. Some

results presented in Sec. 6.1.1, 6.1.2, 6.2.2, and 6.3.2 have already been published in

Baars et al. (2009), Ansmann et al. (2009), Althausen et al. (2009), and Baars et al.

(2011). In the following, text passages and figures are taken from these publications

without explicit citing. The seasonal analysis based on the entire set of measurements

in 2008 is discussed in Chapter 7.

6.1 African aerosol in Amazonia

As outlined in Sec. 2.4, advection of Saharan dust towards Amazonia during the wet

season has been reported several times (Talbot et al., 1990; Swap et al., 1992; Formenti

et al., 2001). In 2005, a MODIS-based study revealed that also African BBA is reg-

ularly transported together with Saharan dust towards South America and possibly

even reaches the Amazon Basin (Kaufman et al., 2005). The lidar observations per-

formed in the framework of EUCAARI provide further evidence of smoke long-range

transport towards Amazonia and also give information on the vertical aerosol struc-

ture during such smoke-transport events. In addition, the contribution of the dust and

smoke fractions to the total aerosol optical properties was measured for the first time.

In the following, the observation case of 10 February 2008 is discussed with focus on

the advection of African aerosol towards Amazonia. Afterwards, further periods with

African dust/smoke advection towards the lidar site during the wet season 2008 are

presented and analyzed.
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Figure 6.1: Range-corrected signal at 1064 nm between 9 February 2008, 1522 UTC

and 10 February 2008, 1200 UTC. The red rectangle indicates the period for the analysis

of the optical properties. Local time is UTC–4 hours.

6.1.1 10 February 2008

Figure 6.1 shows the temporal development of the range-corrected signal at 1064 nm

between 9 February 2008, 1522 UTC (1122 lt), and 10 February 2008, 1200 UTC

(0800 lt). Obviously, a temporally stable, approximately 3.5 km deep aerosol layer

was present during the whole measurement period. This layer was not significantly

disturbed by ML-related cloud formation processes which occurred before 2200 UTC.

The cloud base of these ML cumuli was between 1 and 1.5 km and thus within the

aerosol layer. Between 2200 and 0500 UTC, no low-level clouds occurred. Afterwards,

increased backscattering due to hygroscopic particle growth and cloud formation

within the aerosol layer was observed from time to time. Occasionally, fog developed

during the measurement period (e.g., at around 0500 UTC). Extended cirrus fields

were observed between 10 and 17 km all the time.

The aerosol layer observed at the lidar site probably originated from Africa as

indicated by the 8-day composite image of MODIS AOD (550 nm) from 2–10 Febru-

ary 2008 shown in Fig. 6.2. A high aerosol load (AOD >0.9) over Central Africa was

observed by the satellite. The aerosol plume obviously propagated westwards towards
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Figure 6.2: Mean AOD (550 nm) observed with MODIS from 2–10 February 2008

(http://disc.sci.gsfc.nasa.gov/giovanni/ ).

the Amazon Basin as indicated by HYSPLIT1 backward trajectories (Fig. 6.3, left,

Draxler and Hess , 1998; Draxler et al., 2009; Draxler and Rolph, 2011). As a result,

AOD values up to 0.6 were observed over the Atlantic Ocean. In contrast, the AOD

measured at the lidar site was relatively low with AOD values of about 0.15. However,

local Amazonian sources of aerosol cause an AOD less than 0.05 as discussed below

in Sec. 6.2, so that even weak contributions of out-of-Basin aerosol can significantly

influence the aerosol conditions in Amazonia.

The high AOD over Central Africa and the Atlantic was partly caused by fires in Africa

as MODIS fire counts (Giglio et al., 2003) in Fig. 6.3, left, indicate. A pronounced

fire activity was observed between 5◦N and 15◦N in Africa from 2–10 February 2008.

Consequently, large amounts of BBA were produced and partly transported across

the Atlantic Ocean.

However, also Saharan dust was advected towards South America as model calcu-

1Hybrid Single Particle Lagrangian Integrated Trajectory Model. Meteorological fields from the

archived model assimilation data sets of GDAS (NCEP Global Data Assimilation System) were used.
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Figure 6.3: Left: 9-day HYSPLIT backward trajectories ending at Manaus,

Brazil, on 10 February 2008, 0000 UTC. The underlying fire map derived from

MODIS observations shows all fires (red spots) detected during 21–30 January 2008

(http://www.arl.noaa.gov/ready/hysplit4.html and http://rapidfire.sci.gsfc.nasa.gov).

Right: Column dust load and 700 hPa wind direction as computed with NMMB/BSC-

Dust for 10 February 2008, 0000 UTC.

lations of NMMB/BSC-Dust2 indicate (Fig. 6.3, right, Pérez et al., 2011; Haustein

et al., 2011, more information is given in Appendix D). According to the simulation

for 10 February 2008, 0000 UTC (Fig. 6.3, right), Saharan dust arrived in Ama-

zonia mainly north of the lidar site. At the lidar site, dust concentrations below

0.05 g
m2 (and thus not displayed in Fig. 6.3) were computed. The computations of

NMMB/BSC-Dust thus indicate the possibility that both Saharan dust and African

BBA were transported towards Amazonia on this particular day.

From findings of the DABEX,3 AMMA, and SAMUM-2 experiments it was shown

(Haywood et al., 2008; Ansmann et al., 2011) that smoke is injected and mixed

into the Saharan dust plume when the air masses cross the fire regions in Central

2data kindly provided by Karsten Haustein, Barcelona Supercomputing Center, Spain

(Email: karsten.haustein@bsc.es)
3Dust And Biomass-burning EXperiment
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Africa on their way from the Saharan desert to the Atlantic Ocean. The resulting

dust/smoke mixture is transported further towards the Atlantic Ocean and can reach

South America. The transport from Africa to Amazonia in the trade-wind-controlled

region takes 8–10 days according to HYSPLIT backward trajectories (Fig. 6.3, left).

An intensive analysis of the vertical profiles of the optical and microphysical aerosol

properties observed on 10 February 2008, 0030–0230 UTC, was performed to quantify

the influence of Saharan dust and African BBA on Amazonia’s aerosol population.

Figure 6.4 presents the corresponding vertical profiles of particle backscatter coeffi-

cient, particle extinction coefficient, particle lidar ratio, Ångström exponent, particle

depolarization ratio, and effective radius. According to the vertical structure analysis

discussed in Sec. 4.2.5, the scale height Haer was 1.7 km, the height HAOD95 was

3.5 km, and the AL top height was 4.3 km. The maximum ML top height was

computed to be 1 km and, hence, lower than the height with the maximum particle

backscatter coefficient (at 1.5 km). Above 1.5 km, the particle backscatter coefficient

was slightly decreasing. The different values of the AL top and HAOD95 reveal that

the majority of the aerosol load was below 3.5 km but that aerosol was also present

up to 4.3 km. Maximum extinction coefficients of 60 Mm−1 occurred around 1.5 km.

Integration of the extinction profile leads to an AOD of 0.15 for 355 and 532 nm.

Extinction and backscatter-related Ångström exponents of around 0 and 0.8, respec-

tively, were observed in the aerosol plume above 1 km height. Lidar ratios at 355 nm

are considerably smaller (40–50 sr) than at 532 nm (60–70 sr) as a consequence

of the high backscatter-related Ångström exponents and the low extinction-related

Ångström exponents. The particle depolarization ratio does not exceed 5%. The

inversion calculations (Sec. 4.2.8) reveal almost constant, large effective particle radii

from 0.32 to 0.37 µm for the fine-mode fraction (radius <1 µm) of the smoke aerosol.

These specific optical and microphysical aerosol properties are an unique and clearly

indication for the presence of aged biomass-burning smoke after long-range transport

of more than one week (Müller et al., 2005; Ansmann et al., 2009).

According to the discussion of Müller et al. (2007a) concerning the long-range

transport of BBA, particle growth occurs during the transport in the atmosphere and

levels off after 10–15 days only. This is corroborated by the comparably large effective

radii (>0.3 µm). According to Fiebig et al. (2003), the particles grow by condensation

the first two days after the emission while afterwards the particle growth is dominated

by coagulation.

According to the low particle depolarization ratio observed by the lidar, it is obvious
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Figure 6.4: Vertical profiles of the particle backscatter coefficient, particle extinction

coefficient, particle lidar ratio, Ångström exponents, volume and particle depolarization

ratio, and effective radius measured on 10 February 2008, 0030–0230 UTC. The dust

fraction is plotted in addition. A vertical smoothing of 750 m was applied.
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that the dust fraction in this African plume was low. The dust-smoke separation

(see Sec. 4.2.7) revealed that the dust fraction was less than 12% in the aerosol layer

(Fig. 6.4, lower right panel). To quantify the contribution of dust and smoke particles

to the aerosol conditions in Amazonia, the dust-related and smoke-related AOD

was computed by means of the vertical profiles of the dust fraction and the particle

backscatter coefficient. An AOD of 0.03 (background AOD in Amazonia, see next

section) was subtracted from the smoke-related AOD to account for the local impact.

A dust-related AOD of only 0.011±0.01 was computed. In contrast, the smoke-related

AOD was 0.11±0.01, and thus contributed 72% to the total AOD.

NMMB/BSC-Dust calculations for the lidar location for 10 February 2008, 0000 UTC,

support these findings. The NMMB/BSC-Dust column dust load is rather low for the

lidar site (interpolated from the closest grid points) with 8.25 mg m−2. The resulting

modeled dust optical depth at 550 nm is 0.0097. This value is in good agreement with

the lidar-derived dust AOD of 0.011.

Thus, one must conclude that aged BBA from Africa dominated the aerosol optical

properties at the lidar site on 10 February 2008. The influence of smoke produced

in South America during that time is less plausible. No fires were detected in

South America along the air-mass travel path (Fig. 6.3) which is well defined due

to the trade-wind circulation. The enhanced fire activity which can be seen in

Fig. 6.3 ca. 700 km north of the lidar site occurred between 2 and 5 February 2008

(individual analysis by FIRMS web fire mapper4) and hence should not have affected

the measurements near Manaus (consider also the computed air-mass travel path).

These considerations are consistent with ground-based in-situ measurements made at

the same time during the AMAZE-08 campaign (see Chen et al., 2009). No markers

of fresh BBA were found in the particle-phase mass spectra, but sometimes clear

indications for the presence of out-of-Basin aerosol (e.g., Saharan dust and aged BBA).

4Fire Information for Resource Management System, http://firefly.geog.umd.edu/firemap/
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6.1.2 Overview of dust and smoke advection towards Amazo-

nia during the wet season 2008

Advection of smoke and dust was observed several times during the wet season 2008.

Such advection events were characterized by an AOD above background levels (i.e.,

>0.05, see Sec. 6.2) and by an enhanced particle depolarization which is indicative

for the presence of Saharan dust. An AOD >0.05 together with an enhanced particle

depolarization ratio was observed for 17 lidar measurements in the wet season

2008 (about one third of all wet-season observations). For these 17 periods with

enhanced particle depolarization ratio, the dust fraction was calculated as described

in Sec. 4.2.7. The vertical profiles of the dust fraction and the corresponding particle

extinction coefficient at 532 nm are shown in Fig. 6.5 and are grouped into four

different plots corresponding to date of occurrence. It is interesting to note that the

occurrence of enhanced depolarization in the lidar profiles lasted usually for several

days and three major episodes of African aerosol advection towards Amazonia could

be identified. The first period lasted from 8–15 February 2008, a second pronounced

period occurred from 25 February–1 March 2008 (consistent with the dust and smoke

transport over the Atlantic Ocean discussed by Ben-Ami et al., 2010), and the third

one was recorded from 8–11 May 2008. Rarely, advection of African aerosol for one

day only was observed (30 January, 15–16 March, and 8 April).

The dust fraction was found to roughly increase with time from values below 35%

for the 8–15 February period to values between 20% and 50% for the second episode

(25 February–1 March) and the observations mid of March and April. In mid

May, dust fractions up to 100% could finally be observed as a result of significantly

decreasing fire activity at the beginning of the wet season in Central Africa. The

non-dust fraction during such events may be partly influenced by marine particles

and local pollution events, but is mainly related to African smoke as indicated by the

clear aged-smoke signature in the spectral dependence of the particle backscatter and

extinction coefficients (see Sec. 6.1.1).

These findings from the lidar observations are consistent with ground-based mass

spectral characterization of sub-micron particles at the same location in February

and March 2008 (Chen et al., 2009). The authors state that aerosol from outside the

Amazon Basin occasionally influences the aerosol population. Marine aerosol and

African smoke are suggested to be good candidates for that out-of-Basin aerosol.

The advection of marine aerosol cannot be ruled out. However, the analyzed optical

properties for the 17 lidar cases do not indicate a significant influence of marine
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Figure 6.5: Vertical profiles of the particle extinction coefficient at 532 nm and the

corresponding dust fraction (355 nm) for observations with enhanced depolarization mea-

sured in 2008. A vertical smoothing of 270 m was applied. The legend indicates the date

of the observation in 2008 and the measured AOD at 532 nm.
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aerosol to the total optical properties. Particles of marine origin have lidar ratios well

below 30 sr (Groß et al., 2011). Such low lidar ratios were never observed during the

wet season 2008.

One general finding from the analyzed cases is that the Saharan dust and the African

BBA were trapped in the lowermost 3–3.5 km at the lidar site. Ben-Ami et al. (2010)

discussed the transport of two mixed smoke-dust plumes from Africa over the Atlantic

Ocean from 17 February–1 March 2008 and showed that the aerosol plume extended

up to 3.3 km along the Brazilian coastline on 24 February 2008. Consequently, the

mixed aerosol plume did not significantly change its vertical extent during the 48-hour

transport from the Brazilian coast over the continent towards the lidar site (compare

26 February in Fig. 6.5).

However, the vertical layering of the mixed dust/smoke plumes arriving in Amazonia

was different to the vertical distribution of smoke and dust in Central Africa, measured

close to the source regions. Lidar observations of Saharan dust and BBA in the Sahel

region (Africa) during AMMA and DABEX (Heese and Wiegner , 2008; Johnson

et al., 2008) showed that the aerosol is typically lifted up to 3–5 km height. Different

aerosol layers were frequently observed during the measurements. Pure Saharan dust

was found in the lowermost part of the troposphere (<2 km) and a mixture of dust

and smoke above (2–5 km). Similar aerosol layering was observed near the African

continent at Cape Verde during SAMUM-2 (Tesche et al., 2011b). Consequently,

sedimentation and scavenging processes during the 6–8 days of transport across the

Atlantic Ocean may have led to the mixing of the different aerosol layers and to a

slight decrease in the vertical extent of the aerosol plume when arriving at the South

American continent.

In Fig. 6.6, the dust-related and smoke-related AOD (computed from the vertical

profiles of the dust fraction and the particle extinction coefficient) is shown for the

17 cases of long-range transport. One can see that the AOD at 532 nm was between

0.05 and 0.15 for African BBA particles during the period of 8–15 February. The

BBA contribution to the AOD was up to 0.1 for the period end of February and

between 0.06–0.09 for the period in mid of March. A strong Saharan dust event with

a dust-related AOD value up to 0.18 was observed only on one day (8 May 2008).

The observation of this dust event is rather interesting, because usually no aerosol

transport from Africa towards Amazonia is expected in May. The location of the ITCZ

is north of the Equator at this time, so that African aerosol is usually transported

towards the Caribbean. Dust concentrations as derived from the dust transport
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Figure 6.6: Smoke and dust related AOD for the 17 observation cases in 2008 indicating

the advection of African aerosol towards Amazonia. The measured total particle optical

depth is obtained by adding 0.03 to the shown AOD (full green-orange bar).

model NMMB/BSC-Dust corroborate the finding of the pronounced dust intrusion on

8 May 2008. Simulated maps of the columnar dust load (Fig. 6.7) show that Saharan

dust advection occurred from 8–11 May 2008 towards the northern part of Amazonia

and the Caribbean. In accordance with the predictions from NMMB/BSC-Dust, high

dust concentrations were also measured at Ragged Point, Barbados, Caribbean on

8 May 2008. There, Saharan dust concentrations up to 80 µg/cm3 were observed

at surface-level (Prospero, 2011). A dust AOD (500 nm) of only 0.04 was modeled

for the lidar location for 8 May 2008, which is much lower than the measured value

(0.18 at 532 nm). The discrepancy between the measured and simulated dust AOD

seems to be large. However, the simulation of Saharan dust transport over a distance

of more than 7000 km covering very different regions (desert, savanna, ocean, and

tropical rain forest) is very difficult. For example, Pérez et al. (2011) discussed the

effects upon modeled dust concentration due to the sensitivity of dust removal by

stratiform and convective rain to the prescribed dust solubility in the model. Conse-

quently, a high uncertainty can be expected in the quantification of the Saharan dust

amount in Amazonia. With regard to the high dust concentration in northern South

America (compare Fig. 6.7) one may conclude that the Saharan dust plume extended

much more to the interior of the Amazon Basin than simulated by NMMB/BSC-Dust.
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Figure 6.7: Dust column load and 700 hPa wind direction as derived from NMMB/BSC-

Dust for 8–11 May 2008.

Kaufman et al. (2005) analyzed long-term MODIS data and concluded that the

anthropogenic influence in the dust/smoke plumes traveling over the Atlantic Ocean

is highest in February. The authors state, that the mixed plumes contain about

45% of smoke close to the source at this time of the year. Further away of the

source (0◦–5◦ N, 20◦–30◦ W) it was found that the dust fraction is reduced to 10%

probably due to sedimentation, and that marine particles contributed about 25%

and BBA about 65% to the total AOD in February. When the burning activity in

Central Africa was decreasing (e.g., in March and April), an increasing dust fraction

was reported by Kaufman et al. (2005). These findings are in good agreement

with our observations (compare Fig. 6.6). Consequently, BBA from Africa cannot

be neglected when considering intercontinental transport of aerosol towards Amazonia.
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Figure 6.8: Elemental composition (mass concentration) of aerosol collected during

February and June 2008 at the EUCAARI site in Amazonia. Top: fine mode (radius

<1 µm), bottom: coarse mode (1 to 5 µm). The area in the green rectangle marks the

dates for which crustal elements were enhanced. Plot taken from Ben-Ami et al. (2010).

African aerosol was also detected by in-situ measurements at ground during

EUCAARI and AMAZE-08. For example, Fig. 6.8 (taken from Ben-Ami et al.,

2010) shows the PIXE (Particle-Induced X-ray Emission, Artaxo and Orsini , 1987)

filter analysis of fine and coarse-mode particles from February to June 2008 at the

EUCAARI site in Amazonia for five elemental components: aluminum, silicon, iron,

manganese, and titanium. The concentration of these specific elemental components

is strongly related to mineral dust. One can clearly see that two periods of enhanced

concentration of the five elemental components were observed at surface level. The

period from end of February to beginning of March is in good agreement with the

observation of enhanced particle depolarization with lidar (compare Fig. 6.5). For

the second period beginning of April 2008, unfortunately no lidar data is available.

The dust period observed by lidar in May 2008 is only slightly reflected in the PIXE

analysis. This may indicate that the Saharan dust was mainly advected within lofted

layers above the ML.
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Figure 6.9: Temporal evolution of the range-corrected signal at 1064 nm on

23 April 2008, 2200–2400 UTC. Local time is UTC–4 hours.

6.2 Background conditions in Amazonia

The wet season in the Amazon Basin is assumed to be very clean in terms of aerosols

and almost free of anthropogenic influence (Martin et al., 2010a). Pöschl et al. (2010)

even state that aerosol conditions “approach to those of the pristine pre-industrial

era”. However, aerosol advection towards Amazonia can dominate the local aerosol

population as shown in Sec. 6.1. Therefore, it is interesting to know what the natural

background conditions in Amazonia are and how the aerosol is vertically distributed

under such background conditions. In the following, a case study representing back-

ground conditions is presented, followed by an overview and related statistical results

of all background observations during the wet season 2008.

6.2.1 23 April 2008

As one example for very clean conditions, the lidar observations on 23 April 2008 are

discussed. Figure 6.9 shows the temporal evolution of the range-corrected signal of

PollyXT between 23 April 2008, 2200 UTC and 24 April 2008, 0000 UTC. No rain was

observed during the whole observation period. In the beginning of the observation,

low-level clouds were present at around 1 km agl which prohibited the penetration of

the laser beam to higher altitudes. At about 2300 UTC (1900 local time), the low-level
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Figure 6.10: Left: MODIS fire counts between 17 and 23 April 2008

(http://maps.geog.umd.edu/firms/ ). Right: MODIS AOD for 23 April 2008, 1345–

1525 UTC (http://daac.gsfc.nasa.gov/giovanni/ ).

clouds dissolved and the vertical extent of the aerosol layer of 2 km could be measured.

Mid-level clouds were then observed at altitudes above 6 km. No MODIS AOD was

available on 23 and 24 April 2008 for the whole Amazon Basin (Fig. 6.10, right) due

to the high cloud cover. Figure 6.10, left, shows the fire counts for 17–23 April 2008

derived from MODIS. A high fire activity in South America was observed only in

the northernmost part of the continent in Venezuela and Colombia. Sporadic fires

were detected at the south-eastern edges of the Amazon Basin. However, no fires

occurred close to the lidar site and along the air-mass transport path (Fig. 6.11) in

Amazonia. Consequently, South American BBA is not expected at the field site during

the analyzed period.

HYSPLIT ensemble backward trajectories were calculated for three different arrival

heights (Fig. 6.11). The backward-trajectory ensemble calculation for 500 and 1000 m

arrival height shows a relatively high but acceptable scatter. A low scatter is obtained

for the backward trajectory ensemble at 2000 m arrival height. The air flow close to

the surface (500 m and 1000 m arrival height) came from easterly to north-easterly

direction, while the backward trajectories at 2000 m arrival height indicate transport

from easterly directions. Thus, the air flow during that period was strongly dominated

by the trade-wind circulation. An influence of African aerosol as discussed in Sec 6.1

cannot be ruled out. A high fire activity in Central Africa was also observed during

that time (Fig. 6.10, left), and smoke from these fires and possibly Saharan dust were

obviously transported westward over the Atlantic Ocean. As a result, an enhanced

AOD (>0.5) was observed on 23 April over the Atlantic Ocean (Fig. 6.10, right).
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Trajectory Direction: Backward      Duration: 120 hrs
Vertical Motion Calculation Method:       Model Vertical Velocity
Meteorology: 0000Z 22 Apr 2008 - GDAS1

Figure 6.11: HYSPLIT ensemble backward trajectories for 500, 1000, and 2000 m agl

arrival height on 24 April 2008, 0000 UTC.

These air masses of high AOD may have been also transported towards the Amazon

Basin. However, the backward-trajectory calculations for all three altitudes (Fig. 6.11)

show that the air masses needed about 48 hours to travel from the coast to the lidar

site in central Amazonia. During this transport time, potential out-of-Basin aerosol

was most probably removed by strong tropical precipitation events as can be seen

in Fig 6.12. Here, the accumulated precipitation as derived from NMMB/BSC-Dust

for 23 April 2008 is shown. The computation of the precipitation rate is based on

NCEP reanalysis data which contain precipitation observations. The precipitation rate

from NMMB/BSC-Dust is thus an objective parameter to estimate the wet deposition

efficiency. Fig 6.12 shows a high precipitation rate (up to 5–10 mm in 3 h) at the lidar

site and in the north-east of the lidar site from 0300 until 1500 UTC. These strong

rain events may have contributed to the cleaning of the air from out-of-Basin aerosol

upwind of the measurement site.

The vertical profiles of the particle backscatter coefficient at 532 and 1064 nm and

the respective Ångström exponent for the period without low-level clouds between

2330 and 0000 UTC are shown in Fig. 6.13. One aerosol layer near to the surface

and a second aerosol layer at around 1 km were observed. The second layer may

be interpreted as the residual of the cloud that was observed at the same height

before (Fig. 6.13). The corresponding Ångström exponents for the observed particle

backscatter coefficients (Fig. 6.13) were between 1 and 1.5 which indicates the presence

of a well-developed accumulation mode in the particle size distribution (PSD). Because

of instrumental problems, no information from the UV channels was available.
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Figure 6.12: 3-h accumulated precipitation for 23–24 April 2008 from NMMB/BSC-

Dust on the basis of the NCEP reanalysis. The red star indicates the lidar location.

According to the particle backscatter coefficient profile extrapolated to the surface and

assuming a constant lidar ratio of 60± 20 sr (see Sec. 4.2.4), the lidar AOD at 532 nm

on that day was only 0.019±0.008. This value is lower than the average AOD over

clean marine sites (Smirnov et al., 2009). Table 6.1 summarizes some observations of

very low AOD (500–532 nm) measured at marine and continental sites. According to

these values, the AOD of 0.019 is one of the lowest values ever measured on a continent

and even lower than for usual clean marine conditions. Only measurements above the

marine ML and near Antarctica showed similar low AOD values.

The analysis of the vertical aerosol structure as introduced in Sec. 4.2.5 revealed that

the maximum ML top on that day was 760 m. Thus, it was slightly higher than the

observed top of the first aerosol layer. The scale height Haer was calculated to be
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Figure 6.13: Vertical profiles of the particle backscatter coefficient and the corresponding

Ångström exponent between 2330 UTC and 0000 UTC. A vertical smoothing of 510 m was

applied. Temperature and relative humidity (RH) profile from the radiosonde launch on

24 April 2008, 0000 UTC at Manaus are shown in addition. AOD (532 nm)= 0.019±0.008.

960 m. The AL top and the height HAOD95 coincide at 1750 m. Hence, the AL top

and HAOD95 are suitable to identify the uppermost aerosol layer on that day while Haer

is useless for the identification of the aerosol layers in this case.

The vertical profiles of temperature and relative humidity (RH) on 24 April 2008,

0000 UTC are shown in Fig. 6.13, right. From the temperature profile one can identify

three different inversion layers. The first one is located at around 400 m, the second one

at 800 m, and the third one at around 2000 m. The second and the third temperature

inversion at 800 and 2000 m, respectively, fit very well to the observed aerosol profile.

The second inversion coincides with the top of the lowest aerosol layer and the third

one is close to the AL top. Therefore, one can conclude that the radiosonde launch

performed 60 km to the south is representative for the meteorological conditions at the

field site on this day. The RH profile derived from the radiosonde shows values up to

100% in the lowest 1000 m which is in good agreement with fog observation later during
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Air-mass

origin

Minimum

AOD

Location, time period, and further notes Reference

marine 0.05 Portugal, 1999 Ansmann et al. (2001)

above marine

ML

0.013 5-year mean (1994–1999) for August

at Mauna Loa (3.4 km agl), Hawaii

Holben et al. (2001)

marine at low

wind speed

0.05 Atlantic Ocean,

RV Polarstern transects

Kanitz (2011)

arctic, marine 0.02–0.03 near the coastline of Antarctica Smirnov et al. (2009)

marine 0.04–0.08 southern Atlantic, October–December

2004

Smirnov et al. (2006)

marine 0.01 Mean value for July at Cape Grim, Tas-

mania for 1986–1999. Pinatubo affected

periods have been removed.

Wilson and Forgan

(2002)

continental 0.05 Beijing, January 2005 Tesche et al. (2007)

continental 0.011 Amazon rain forest, wet season 2008 this study

continental 0.06 5-year mean (1994–1999) for December–

January at the CART Site, Oklahoma,

USA

Holben et al. (2001)

Table 6.1: Observations of minimum AOD at several locations (wavelength range: 500–

532 nm). The lowest AOD of a certain campaign or lowest monthly-mean AOD of an

AERONET site are given.

the observation period (after 0000 UTC). The RH decreases to values between 60% and

80% at higher altitudes. The observation of an AOD <0.02 is very surprising under

conditions of RH close to 100% because one would expect increased light attenuation

due to hygroscopic growth of the particles. Either the aerosol concentration was so

low that hygroscopic growth effects did not significantly amplify the light scattering

or hygroscopic growth is weak for the natural aerosol particles in Amazonia as, e.g.,

outlined by Zhou et al. (2002) and Rissler et al. (2004). The authors classified the

majority of the particles under clean background conditions in Amazonia as “less

hygroscopic”. In summary, one can conclude that the observed aerosol conditions on

23 April 2008 with an AOD of 0.02 represents background or natural aerosol conditions

over the Amazon rain forest.
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Figure 6.14: Temporal evolution of the AOD at 532 nm during the wet season 2008.

Error bars indicate the uncertainty due to the assumption of the lidar ratio. AOD values

below the red line indicate background aerosol conditions.

6.2.2 Further background cases

In total, vertical profiles of the particle backscatter coefficient at 532 nm could be

obtained for 53 lidar observation days from January to May 2008. The aerosol optical

depth (AOD) at 532 nm for these 53 observations is shown in Fig. 6.14. Very clean

conditions with an AOD well below 0.05 were frequently found (in about half of these

53 observation). A mean AOD of 0.03± 0.02 was observed for such clean conditions.

This mean AOD value can be used as a measure for background conditions over the

tropical rain forest. Accordingly, this AOD level may be interpreted to be caused by

primary aerosol emission and secondary aerosol formation of condensable precursor

gases emitted by the tropical rain forest.

The minimum AOD of the entire campaign of 0.011± 0.004 was observed on 18 April.

This is the lowest value the IfT has ever measured with its lidars over a continental site

during the last 20 years. Our observations in central Amazonia are in good agreement

with AOD observations for background conditions performed in Rondônia (Guyon

et al., 2003). A mean AOD (500 nm) of 0.048 ± 0.08 from 10 days of background

conditions was measured.

Six cases in 2008 for which the AOD at 532 nm was below 0.05 are presented in
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Figure 6.15: Backscatter and extinction coefficient profiles at 532 nm for very clean

cases in 2008. Dates and the corresponding AOD at 532 nm are given in the legend.

Fig. 6.15. The AOD ranged from 0.011 to 0.037 and was thus below the marine and

continental background values listed in Table 6.1. Backward-trajectory analysis for

these cases shows the typical north-easterly to easterly air flow as observed for most

observation cases in the wet season (see Sec. 7.1). According to the vertical profiles of

particle backscatter coefficient and particle extinction coefficient (lidar ratio = 60 ±
20 sr) for these background cases, aerosol was absent at heights above 2 km. Thus,

long-range transport of aerosols obviously did not contribute to the aerosol load on

these days. Clouds were present above the AL top in all cases (not always visible in

Fig. 6.15), so that rain events and thus wet deposition may have partly caused these

clean conditions.

Maximum extinction coefficients for these background conditions reach up to about

25 Mm−1 at 532 nm. On average the particle extinction coefficients were close to

10 Mm−1, which is an order of magnitude lower than the mean particle extinction

coefficient at Leipzig, Germany.
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Finally, one may conclude that background aerosol condition in the central Amazon

Basin are characterized by an AOD (532 nm) of 0.03±0.02. Under these background

conditions, the particle extinction coefficient is of the order of 10–20 Mm−1 and the

aerosol is trapped in the lowermost 1.5–2 km in the troposphere. Due to the findings

discussed here, background conditions in this work are defined by an AOD (532 nm)

below 0.05. This is a factor of two lower than the value suggested by Holben et al.

(1996b) and much lower than the background AOD of 0.1–0.14 at 440 nm reported

from AERONET observations in the northern Amazonian forest (Schafer et al., 2008).

6.3 Dry season: Smoke aerosol observations

The aerosol characteristics in the dry season are dominated by BBA from vegetation

fires in Amazonia. This was already documented in publications from many previous

campaigns (see Sec. 2.2). However, a detailed vertical analysis of optical and

microphysical smoke aerosol properties has not been presented in the literature

up to now. Here, three cases of smoke observations are shown and intensively

discussed. The first case deals with aged regional smoke layers and a high aerosol

load. The second case deals also with smoke transported towards the lidar site, but

the aerosol load was lower and optical and microphysical properties were different

to the first case. A third case illuminates the hygroscopic growth of the smoke particles.

6.3.1 11 September 2008

The temporal development of the range-corrected signal at 1064 nm measured be-

tween 10 September 2008, 2130 UTC and 11 September 2008, 1500 UTC is shown in

Fig. 6.16. For intervals drawn in black, no measurements were available. A dense and

ca. 4.5 km deep aerosol layer was observed during the whole period as well as diverse

cloud layers. Between 0000 UTC and 0030 UTC (2000 lt and 2030 lt), a decreased

backscattering intensity was measured - most obviously as a result of fog development.

Further fog formation was observed after 0600 UTC. The backscatter intensity between

2 and 3 km increased after 0700 UTC ending in sporadic cloud formation (indicated

by the shadow above the cloud). The extent of the aerosol layer did not significantly

change during the whole observation period. The AERONET sun photometer mea-

sured an AOD (500 nm) of 0.42 on 10 September 2008, 2105 UTC and of 0.61 on

11 September 2008, 1223 UTC. These values are quite high compared to AOD values
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Figure 6.16: Range-corrected signal at 1064 nm between 10 September 2008, 2130 UTC

and 11 September 2008, 1500 UTC. The red rectangle indicates the period for the analysis

of the optical properties. Local time is UTC–4 hours.

usually measured during the dry season at the lidar location (see Chapter 7).

Fig. 6.17, left, shows the MODIS AOD (550 nm) for 10–11 September. According to

these satellite measurements, an aerosol plume was located over central South America

south-east of the lidar site. AOD (500 nm) values up to 0.74 were detected within this

plume. Around the lidar site, the MODIS AOD was about 0.5. A very pronounced

fire activity in the south, south-east, and east of the lidar site obviously caused this

aerosol plume over Amazonia as can be seen in Fig. 6.17, right. The fire counts for

7–10 September 2008 as obtained by FIRMS from MODIS measurements and 3-day

backward trajectories for the arrival heights of 1500, 3500, and 5000 m from HYS-

PLIT are shown. The backward trajectories indicate an air-mass flow from easterly

directions. The air masses have crossed the fire-active regions in the east 1–2 days

before the arrival at the lidar site. Thus, having the uncertainties of the backward

trajectories in mind, smoke from these numerous fires had obviously reached the lidar

site between 10 and 11 September 2008.

The vertical profiles of the optical and microphysical properties of smoke aerosol are

presented in Fig. 6.18 for the observation period between 0100 and 0200 UTC (in-

dicated by a red rectangle in Fig. 6.16). The particle backscatter and extinction
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Figure 6.17: Left: MODIS AQUA AOD composite (550 nm) for 10–11 September.

The star indicates the lidar location. Right: Fire counts as derived by FIRMS for 7–

10 September 2008 and HYSPLIT backward trajectories in 6-h steps for the arrival heights

of 1500 (yellow), 3500 (blue), and 5000 m agl (green) for 11 September 2008, 0100 UTC.

coefficients, particle lidar ratios, Ångström exponents, effective radii, and SSA values

(532 nm) determined for this one-hour period are shown. The vertical profiles of RH

and potential temperature derived from the radiosonde launch at Manaus military

airport at 11 September 2008, 0000 UTC are given in addition. A complex vertical

structure with multiple aerosol layers is visible. The analysis of the vertical aerosol

structure as introduced in Sec. 4.2.5 revealed that the AL top (indicated in Fig. 6.18,

upper left panel) is 4.52 km. The AL top coincides with a strong temperature inversion

and a decrease of RH to values of about 20% (cf. Fig. 6.18, lower right panel). The

HAOD95 is slightly below the AL top at 3.89 km, while Haer is at 2.1 km. This again

shows that Haer cannot be used to quantify layer boundaries and is a poor indicator

for the vertical distribution of the aerosol. The maximum ML top on 10 September

was calculated to be 1.57 km.

The maximum values of the particle backscatter and extinction coefficients at 532 nm

of 1.8 Mm−1sr−1 and 150 Mm−1, respectively, were observed at 1.6 km height and

hence at the top of the ML. Because RH is highest (85%) at this height, hygroscopic

growth had most obviously led to an increased scattering. Above the ML top, the

backscatter and extinction coefficients slightly decreased with height up to 2.8 km as

a consequence of the decreasing RH. Above 2.8 km, a third aerosol layer extending up
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Figure 6.18: Vertical profiles of backscatter coefficient, extinction coefficient, lidar ra-

tio, Ångström exponents, effective radius, and SSA on 11 September 2008, 0100 UTC–

0200 UTC. AOD (532 nm) is 0.44. Potential-temperature (Tpot) and relative-humidity

(RH) profiles from the Manaus radiosonde launch on 11 September 2008, 0000 UTC are

shown in addition.
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Layer Height range

[km]

reff [µm] a [µm2/cm3] SSA VMD

[µm]

1 1.3 – 1.8 0.34±0.08 250±30 0.91±0.09 0.51

2 1.9 – 2.3 0.32±0.07 220±35 0.89±0.08 0.48

3 2.3 – 2.6 0.26±0.08 200±50 0.81±0.13 0.37

4 3.0 – 4.0 0.21±0.05 170±40 0.93±0.05 0.35

Table 6.2: Microphysical properties as derived by inversion for different aerosol layers

for 11 September 2008 . Effective radius, surface-area concentration a, and SSA were

computed. Volume mean diameter (VMD) was derived from effective radius as explained

in the text.

to the AL top was present with mean values of about 0.9 Mm−1sr−1 for the particle

backscatter coefficient at 532 nm. Stable and relative dry conditions (RH≈50%) led to

almost constant aerosol properties in this layer. Integration of the particle extinction

coefficient results in an AOD (532 nm) of 0.44 for the 1-hour period. This is one of

the highest values measured by the lidar during the entire campaign.

Relatively high particle lidar ratios were observed (see Fig. 6.18, upper right panel).

Values of 70 sr at 355 nm and 80–90 sr at 532 nm in the lowermost 2.5 km and

wavelength-independent values of 80–90 sr above 2.5 km were calculated. These val-

ues are in the same range as lidar ratio values of aged African smoke observed at

the Cape Verde Islands in 2008 (Tesche et al., 2011a). The Ångström exponents were

about 1 for both particle backscattering and extinction (see Fig. 6.18, lower left panel).

The Ångström exponents are almost constant over height. The particle depolarization

ratio (not shown) was very low on that day (δpar < 0.03). This observation corrobo-

rates the assumption that aged BBA does not depolarize the backscattered light. This

assumption was used for the smoke-dust separation (Sec. 4.2.7).

The inversion results for four different layers are presented in Fig. 6.18 (lower center

panel) and Table 6.2. Effective radii between 0.26 and 0.32 µm were calculated in the

humid aerosol plume below 2.8 km. The effective radius was highest in layer 1 which

corresponds to the layer with the highest RH. The effective radii are slightly decreas-

ing with height in accordance to the vertical profile of, e.g., the particle backscatter

coefficient and the RH.

The SSA was relatively high with values from 0.81 to 0.91 and was decreasing with

height in the humid aerosol plume (layer 1–3). For the dry aerosol plume (above
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Period AOD

Lidar 11 September, 0100–0200 UTC 0.44

CATT-BRAMS (BBA only) 11 September, 0000 UTC 0.12

AERONET 10 September, 2105 UTC 0.42

AERONET 11 September, 1223 UTC 0.61

Table 6.3: AOD from lidar (532 nm), from CATT-BRAMS (500 nm), and from

AERONET sun photometer (500 nm) around the lidar observation on 11 September 2008.

2.8 km, layer 4), the inversion shows that the effective radius was smaller than in the

humid aerosol plume and the SSA was 0.93. These values, in accordance with the

rather high effective radii in the four layers, are a clear indicator for smoke from forest

fires that is several days old (Müller et al., 2007a).

Reid et al. (1998) found SSA values, derived from measurements of dried aerosol, of

0.85 for aged smoke in south-east Amazonia. Dubovik et al. (2002) reported SSA

values from columnar AERONET measurements between 0.9 and 0.94 for Amazon

forest-fire smoke and between 0.86 and 0.92 for South American savanna smoke. The

lidar-derived SSA values are thus within the range of these findings from previous

experiments.

Reid et al. (1998) observed a volume mean diameter (VMD) of 0.35 µm in aged smoke

hazes in southern Amazonia. By assuming a log-normal aerosol size distribution,

the VMD can be estimated from the inversion results of the lidar observations on

11 September 2008. The resulting lidar VMD was 0.51, 0.48, 0.37, and 0.35 µm for

layer 1,2,3, and 4 respectively (cf. Table 6.2). Consequently, a good agreement between

the lidar observations and airborne measurements performed by Reid et al. (1998) was

found for the dry aerosol plume (above 2.8 km, layer 4). Because aerosol was dried for

the airborne measurements, one may speculate that hygroscopic-growth effects lead to

higher VMD in layers with high RH (layer 1 and 2).

The AERONET sun photometer at the lidar site measured an AOD of 0.42 at 500 nm

just before sunset and thus 4 hours before the lidar measurements (see Table 6.3).

Hence, virtually no differences in the aerosol conditions could be observed between

sunset and the intense analysis period between 0100 and 0200 UTC (lidar AOD of

0.44). In the morning after the lidar measurement (ca. 10 hours after the observation),

the AERONET AOD increased to 0.62 (see Table 6.3). Consequently, the aerosol

load had increased during the night of 10–11 September 2008 as already discussed in
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Figure 6.19: Comparison of the vertical profiles of extinction coefficient between lidar

(green, at 532 nm) and CATT-BRAMS (black, at 500 nm). The CATT-BRAMS profile

was computed from the model AOD and the vertical profile of model PM2.5 for BBA.

the analysis of the temporal evolution of the range-corrected signal (Fig. 6.16). The

AERONET Ångström exponent was 1.46 on 11 September 2008, 2105 UTC and 1.08

on 11 September 2008, 1225 UTC and thus slightly higher than the values derived

from the lidar observations.

A comparison of the lidar results to the respective simulation with the operational BBA

forecast model CATT-BRAMS5 (Freitas et al., 2009; Longo et al., 2010) is shown in

Fig. 6.19. The vertical profile of the lidar extinction coefficient and the derived model

BBA extinction profile is shown. The output of CATT-BRAMS is the AOD at 500 nm

and a vertical PM2.56 profile every 3 hours. The extinction profile from the model was

calculated by scaling the PM2.5 profile to the AOD. Since CATT-BRAMS computes

BBA from burning events, the AOD and PM2.5 values are valid for BBA only. Ac-

cording to Fig. 6.19, the model clearly underestimated the smoke amount in the whole

aerosol layer (below 4.3 km) at the lidar site.

This underestimation by the model can be also seen from the values listed in Table 6.3.

The sun photometer AOD and the lidar AOD are almost equal with 0.42–0.44 and are

5Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional

Atmospheric Modeling System, data kindly provided by Karla Longo, CPTEC, INPE, E-mail:

karla.longo@inpe.br.
6Mass concentration for particles with a diameter of 2.5 µm or less.
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Figure 6.20: Temporal development of the range-corrected signal at 1064 nm between

15 August 2008, 1100 UTC and 16 August 2008, 1400 UTC. The red rectangle indi-

cates the time period for the analysis of the optical aerosol properties. Black areas are

measurement interruptions. Local time is UTC–4 hours.

consistent with the MODIS AOD observations (Fig. 6.17, left). In contrast, the model

reproduces an AOD of 0.12 for BBA only. Because the background AOD at the li-

dar site is about 0.03±0.02 (see Sec. 6.2), more than 0.38 of the lidar AOD can be

attributed to smoke. Hence, the model underestimates the smoke AOD by more than

0.2. The reason for the underestimation remains unclear, but is most probably related

to wrong assumptions concerning fire activity and smoke emissions.

6.3.2 15 August 2008

The temporal development of the range-corrected signal at 1064 nm from 15 Au-

gust 2008, 1100 UTC to 16 August 2008, 1400 UTC is shown in Fig 6.20. For

intervals drawn in black, no measurements were available. A highly variable, complex

aerosol layering was observed during that period. No clouds and relatively low aerosol

backscattering were observed between 1100 and 1400 UTC on 15 August 2008.

After the restart of the measurements at 2000 UTC, rain events prohibited lidar

observations for about one hour. Between 2100 and 0100 UTC, a two-layer aerosol
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Figure 6.21: MODIS AQUA AOD composite (550 nm) for 15 August 2008 (1805 UTC)

and 16 August 2008 (1710 UTC). The star indicates the lidar location.

structure was observed together with clouds at various height levels. Aerosol

conditions changed after 0430 UTC, when a new, dense aerosol plume (centered at

around 2 km) arrived at the lidar location. The backscatter intensity in this layer

continuously increased until 1400 UTC. Cloud development between 3 and 4 km was

observed from 1130 UTC. Several cirrus layers were frequently present during the

whole observation period.

The MODIS AOD (550 nm) for 15 and 16 August 2008 is shown in Fig. 6.21. A high

AOD (AOD >0.9) was observed in 600 km distance south-east of the lidar site on

15 August 2008, 1805 UTC. At the lidar site, an AOD of less than 0.2 was obtained

at the same time. Unfortunately, no MODIS data are available for regions east of

the lidar site. However, the MODIS AOD on 16 August 2008 shows that the aerosol

plume detected on 15 August in the southeast of Manaus was obviously moving

towards northwest and crossed the lidar site. An AOD of 0.5 around the lidar site

was reported by MODIS at 1705 UTC on 16 August 2008. The increasing backscatter

intensity as observed with the lidar (see Fig. 6.20, 1100–1400 UTC) was obviously

caused by this aerosol plume.

In Fig. 6.22, active fires detected by NOAA-15 (polar orbiting satellite) and GOES

(Geostationary Operations Environmental Satellite) are shown in addition to the

MODIS fires spots (MODIS did not pass the area southeast of the lidar). Several fires

were detected by GOES 600 km away from the lidar site close to the location of the
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Figure 6.22: Fire spots as detected by various satellites (see legend) on 15 August 2008.

Data were provided by CPTEC (Brazilian Center for Weather Forecasting and Climate

Studies, http://sigma.cptec.inpe.br/queimadas/ ). HYSPLIT backward trajectories end-

ing on 15 August 2008, 2300 UTC at 1000 (red), 2500 (yellow), and 5000 m (green) are

overlaid. MODIS AQUA visible image from 15 August 2008 is underlaid.

maximum MODIS AOD. According to the MODIS visible images and the HYSPLIT

backward trajectories (Fig. 6.22), the produced smoke was obviously transported

towards the lidar site. According to the HYSPLIT backward trajectories, the travel

time to the lidar site was approximately 24 hours.

Figure 6.23 shows the vertical profiles of particle backscatter and extinction co-

efficient, lidar ratio, and Ångström exponents at different wavelengths and the

corresponding microphysical aerosol properties for the observation period from

2235–2335 UTC on 15 August 2008. The vertical profiles of temperature and RH

from the radiosonde launch on 16 August 2008, 0000 UTC at Manaus military airport

are shown in addition. The analyzed period from 2235–2335 UTC corresponds to the

pronounced two-layer aerosol structure observed directly after the rain events at the

lidar site (compare Fig. 6.20) and can be regarded as the arrival time of first smoke

from the fires in the southeast.

During this observation, the lowermost aerosol layer extended up to ca. 1.6 km and

coincides perfectly with the modeled daytime ML top (for methodology see Sec 4.2.5).

A lofted aerosol layer centered at ca. 2.5 km was present during the whole analyzed
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Figure 6.23: Vertical profiles of the particle backscatter coefficient, particle extinction

coefficient, particle lidar ratio, Ångström exponents, effective radius, and SSA measured

on 15 August 2008, 2235–2335 UTC. AOD (532 nm) = 0.15. Temperature (T) and

relative humidity (RH) profiles from the radiosonde launch in Manaus on 16 August 2008,

0000 UTC are shown in addition.
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period. Aerosol was observed up to 4.64 km (AL top). Integration of the extinction

profile yields an AOD of about 0.3 and 0.15 for 355 and 532 nm, respectively, and was

thus well above the background level. Haer was 1.38 km and hence even lower than

the ML top. HAOD95 was 3.9 km. Different clouds were observed above 9 km during

the whole measurement (not shown in Fig. 6.23). The vertical profiles of backscatter

and extinction coefficient show a strong spectral behavior. The respective Ångström

exponents are high with values between 1.5 and 2 in the short-wavelength range.

Particle extinction coefficients of 170 and 80 Mm−1 for 355 and 532 nm, respectively,

were retrieved in the aerosol layer centered at around 1 km. Values up to 100 and

45 Mm−1, respectively, were observed in the center of the lofted aerosol layer at

2.5 km, where the RH had its maximum with values close to 90%. Hygroscopic-growth

effects may thus have been responsible for the increased scattering at 2.5 km agl. The

lower limit of the lofted aerosol layer (2.1 km) coincided with a minor temperature

inversion and a steep gradient in RH. A strong temperature inversion is visible

at 3.4 km in the radiosonde temperature profile taken 60 km away from the lidar

site. The height of the inversion was slightly higher than the top of the pronounced

lofted aerosol layer. The vertical profiles of the lidar ratio for the two wavelengths

indicate a weak wavelength dependence at lower heights and independence above

2 km height. Typical values of the particle lidar ratio for this case varied between

45 and 55 sr. In agreement with the high extinction-related Ångström exponents,

rather low particle radii (0.13–0.14 µm) for both aerosol layers were obtained from

the inversion calculations. The computed SSA is 0.945±0.05 in the lowermost aerosol

layer and between 0.92 and 0.94 in the center of the lofted aerosol layer. The particles

were obviously only weakly absorbing.

The optical and microphysical properties of the smoke aerosol on 15 August were

considerably different to the ones on 11 September 2008. Particles were much smaller

and less absorbing on 15 August than on 11 September. The reason for those

differences could be the shorter travel time to the lidar site (<24 h) or different

aging processes (e.g., cloud/rain processing). But also different burning conditions

(different location, different vegetation etc.) may have led to different smoke with

different optical and microphysical properties.

6.3.3 28 October 2008

As already noticed in the foregoing case studies, smoke particles seem to be hygro-

scopic as indicated by the correlation of RH with the particle backscatter coefficient
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Figure 6.24: Temporal development of the range-corrected signal at 1064 nm on 28 Oc-

tober 2008. The red rectangle indicates the period for the detailed analysis. Potential

temperature, RH, and mixing ratio m profiles from the radiosonde launch at Manaus

military airport on 29 October 2008, 0000 UTC are shown in addition.

and the particle extinction coefficient. This aspect is illuminated in more detail in this

Section, based on the lidar observation performed between 28 October 2008, 2230 UTC

and 29 October 2008, 0200 UTC. The analysis of backward trajectories, MODIS fire

counts, and MODIS AOD shows that again BBA was advected from the south-east

towards the lidar site. As indicated by an AOD of 0.38, which is well above the

background level, this BBA dominated the aerosol optical properties during the lidar

measurement.

Figure 6.24 shows the temporal development of the range-corrected signal at 1064 nm

for this time period. A pronounced aerosol layer up to about 2.7 km was present. Near

the top of the aerosol layer, the backscatter intensity was partly strongly enhanced.

Some cumulus clouds developed near the top of the AL between 0050 and 0120 UTC.

Figure 6.24, right, shows the corresponding profile of the potential temperature, RH,

and the water-vapor mixing ratio derived from the radiosonde launch at Manaus mili-

tary airport on 29 October 2008, 0000 UTC. The RH was increasing with height up to

1.6 km. The maximum RH measured with the radiosonde was 98.3% and thus close

to saturation. The water-vapor mixing ratio indicates a well-mixed boundary layer up
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Figure 6.25: Temporal evolution of the particle backscatter coefficient at 532 nm on

28–29 October 2008 for several periods. A vertical smoothing of 90 m was applied. Times

(UTC) are given in the legend.

to the height of the maximum RH.

The particle backscattering is obviously strongly correlated to the RH as the pro-

files in Fig. 6.25 indicate. Several consecutive short-term particle backscatter coeffi-

cient profiles are shown. Backscatter values at 750 m were almost constant (around

2 Mm−1sr−1) during the entire measurement period and seems to represent dry aerosol

conditions (RH below 65%). Above 750 m height, the backscattering changed sig-

nificantly for the different analyzed periods. The particle backscatter coefficient at

ca. 1.9 km increased continuously from values of 3 Mm−1sr−1 to values of 15 Mm−1sr−1

between 2230 and 0107 UTC as a result of hygroscopic growth. Backscatter values

of 15 Mm−1sr−1 (corresponding to particle extinction coefficients<1000 Mm−1) are

still indicating aerosol scattering processes, but are a factor of 7.5 higher than under

dry conditions. As a consequence of the steady hygroscopic growth, finally activa-

tion of cloud condensation nuclei occurred and clouds developed in the aerosol layer

after 0107 UTC leading to a maximum backscatter coefficient of 70 Mm−1sr−1. The

cloud base, however, was slightly higher than the location of the maximum aerosol

backscattering before. After the cloud formation period (0127–0200 UTC), the parti-
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Figure 6.26: Vertical profiles of particle backscatter and extinction coefficient, lidar

ratio, and Ångström exponent for 28 – 29 October 2008 between 2230 UTC and 0030 UTC.

cle backscatter coefficient suddenly dropped to values of about 3 Mm−1sr−1 as observed

in the beginning of the measurement. The vertical profile then showed two maxima,

one at 1.6 km and a second one at the former cloud peak at 2.4 km.

To study the humidification effect in more detail, the vertical profiles of parti-

cle backscatter coefficient, particle extinction coefficient, particle lidar ratio, and

Ångström exponent for the period between 2230 and 0030 UTC (indicated by red

lines in Fig. 6.24, 2-h period needed to determine the extinction coefficient from the

weak Raman signals) are presented in Fig. 6.26. The profiles of the particle backscat-

ter and extinction coefficients show a clear increase with height up to about 2 km for

all wavelengths. Above this peak, a strong decrease of the backscatter and extinc-

tion coefficients was observed. The vertical structure analysis revealed an AL top of

2.7 km, an HAOD95 of 2.37 km, and an Haer of 1.7 km. The ML top was simulated to be

2.23 km. In contrast to the vertical gradient in the particle backscatter and extinction

coefficients, the particle lidar ratios and the extinction-related Ångström exponent do

not show any significant height dependence. Backscatter-related Ångström exponents

were slightly decreasing with height. Depolarization is negligible on that day for the

observed particles. The height-independent lidar ratios for both wavelengths indicate

that both the particle backscatter and extinction coefficient increase by almost the

same factor with increasing RH. The week dependence of the Ångström exponent on
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RH is in agreement with measurements of ambient aerosol extinction of urban aerosol

in Leipzig (Skupin, 2011). RH-independent Ångström exponents of urban aerosol were

observed under conditions of high RH.

An attempt to analyze the hygroscopic growth behavior of the optical aerosol prop-

erties in more detail is presented in the following. A correlation between the ver-

tical aerosol profiles and RH was performed to determine the humidification factor

(Kotchenruther and Hobbs , 1998):

f(RH) =
ξmeas

ξdry
= 1 + a

(
RH

100%

)b
. (6.1)

The humidification factor f(RH) is the ratio of the measured optical quantity ξmeas

(particle backscatter coefficient or particle extinction coefficient) to the optical quan-

tity under dry conditions ξdry. f(RH) can then be expressed by a simple model with

the parameter a and b.

Fig. 6.27 shows the 532-nm particle backscatter and extinction coefficients as well as

the corresponding RH profile in the lowermost 3 km – for which the correlation was

performed. It is obvious that the height of the maximum RH in the radiosonde profile

(at 1.6 km) is below the height of the maximum backscatter (and extinction) coeffi-

cient in the lidar observation (at 1.9 km). The radiosonde is launched 60 km away, in

the south of Manaus close to the Amazon river. The 2-million inhabitant city Manaus

(heat island effect, e.g., Oke, 1973) and also the Amazon river (sea-land-circulation

observed, Garstang et al., 1990) may have a significant influence on the local meteorol-

ogy. Thus, different meteorological conditions must be kept in mind when comparing

lidar and radiosonde profiles. Nevertheless, an attempt to investigate the hygroscopic

growth of the particles at the lidar site was made by shifting the RH profile of the

radiosonde in such a way that the maximum (RH = 98.3%) coincides with the max-

ima in the lidar-derived optical data. Now, a strong correlation between RH and the

particle backscatter and extinction coefficients is found (Fig. 6.27, right). Even if this

procedure is critical, it is the best estimate for the investigation of hygroscopic growth

of Amazonian aerosol by the lidar observations. No other humidity profiles than the

radiosonde data from Manaus military airport were available.

The humidification factors for the particle backscatter and extinction coefficient are

2.21 and 2.15, respectively, after Eq. 6.1 for RH <65% (dry conditions) to RH = 98%.

However, the extinction-related humidification factor of f(98%) = 2.15 is a factor of

2 lower than the respective value observed for urban aerosol in Leipzig (Skupin et al.,

2010). Kotchenruther and Hobbs (1998) measured a humidification factor between
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Figure 6.27: Vertical profiles of particle backscatter coefficient and particle extinction

coefficient (532 nm). A vertical smoothing of 90 m was applied. The RH profile as derived

from the radiosonde launch at 0000 UTC on 29 October 2008 and the used RH profile for

the correlation is shown.

RH = 65% and RH = 85% of f(85%) = 1.24 for BBA in Brazil, which is in fair agree-

ment with the lidar observation that yields a humidification factor of f(85%) = 1.51

in the respective RH range.

The corresponding fitting curves for the lidar data as derived from Eq. 6.1 are pre-

sented in Fig. 6.28. The derived parameter a is 1.31 and 1.47, and b is 5.05 and 6.71 for

the particle extinction coefficient and the particle backscatter coefficient, respectively.

The hygroscopic growth of the particles observed by lidar was thus stronger than the

hygroscopic growth of BBA observed in the Brazilian cerrado for 30% < RH < 90% as

reported by Kotchenruther and Hobbs (1998; two examples plotted in Fig. 6.28). The

authors obtained 0.14 < a < 0.7 and 3.2 < b < 6.1. The fitting curve for the hygro-

scopic growth of urban aerosol observed in Leipzig, Germany (Skupin, 2011), is shown

in addition in Fig. 6.28. The hygroscopic growth of urban aerosol is obviously more

pronounced than the hygroscopic growth of Amazonian BBA. The growth behavior of

the urban aerosol was modeled with a = 3.67 and b = 7.04.

An attempt to study the hygroscopic growth behavior of BBA by lidar was presented.

However, the comparison to other published hygroscopic-growth measurements is dif-

ficult, since these measurements were performed at a different RH range and with
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Figure 6.28: Correlation between RH and lidar optical properties at 532 nm on 28 Octo-

ber 2008. Hygroscopic-growth examples of BBA from scattering measurements in Brazil

during SCAR-B (Kotchenruther and Hobbs, 1998) and of urban aerosol from extinction

measurements in Leipzig (Skupin, 2011) are shown for comparison. The fitting curve and

the respective parameter (see Eq. 6.1) are plotted in addition.

different instrumentation. Furthermore, the humidity profile used for the lidar study

was not taken at the location of the measurements and thus is not ideal for the in-

vestigation of hygroscopic growth. However, it was shown that hygroscopic growth of

BBA is not negligible. But due to the critical assumptions, which had to be made,

a quantification of these effects is very uncertain and thus should be seen as a rough

estimation.

PollyXT was modified in 2011. It is now possible to measure the water-vapor mix-

ing ratio with the Raman technique. This means that vertical profiles of aerosol and

water vapor can be obtained simultaneously. It will be therefore possible to study

the hygroscopic growth behavior of aerosol with much higher accuracy in future lidar

campaigns.
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Chapter 7

Observations – Part II: Seasonal

aerosol characteristics

In Chapter 6, lidar measurements of the different aerosol conditions prevailing in Ama-

zonia were presented in the form of case studies. However, the whole variability of

vertical aerosol profiles cannot be covered with the analysis of these case studies. In

this Chapter, statistical results from the measurement campaign in Amazonia in 2008

are presented and discussed with focus on the differences between the wet and dry sea-

son. First, the general wind patterns prevailing in 2008 are analyzed using HYSPLIT

backward trajectories. Afterwards, an overview of the measured vertical aerosol pro-

files is given, and finally the statistical analysis of the lidar-retrieved aerosol properties

is intensively discussed.

7.1 Meteorological conditions

The meteorological conditions at the tropical observation site in Brazil were rather

similar within the wet season and within the dry season. No significant day-to-day

variability was observed in both seasons. The wind-direction patterns in both

seasons were analyzed by using HYSPLIT backward trajectories. A cluster analysis1

(Fig. 7.1) based on backward trajectories arriving at 1500 m at 0000 and 1200 UTC

was performed. This analysis revealed that air masses were transported from easterly

directions to the field site during both seasons. Four clusters for each season were

identified, but virtually no difference in the airflow occurred during 2008. These find-

1The backward-trajectory cluster analysis was performed with the offline-version of HYSPLIT

(version 4.9), which can be downloaded at http://ready.arl.noaa.gov/HYSPLIT.php.
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Figure 7.1: Cluster analysis for the wet and dry season based on daily 172-h backward

trajectories at an arrival height of 1500 m agl. Four clusters for each season were identified.

The frequency of occurrence of each of the clusters (1–4) is given in brackets.

ings reveal the dominance of the trade-wind circulation for the location as described

in Chapter 2. The weighting of the trajectory clusters is slightly different between the

two seasons. In the wet season, mostly a north-easterly flow prevails (in 62% of all

cases, compare cluster 1 and 2 in Fig. 7.1, left), whereas the air masses came mainly

from easterly direction in the dry season (all clusters in Fig. 7.1, right). However, with

respect to the uncertainty of a single backward trajectory (see, e.g., Fig. 6.11) and

the small difference between the clusters, one must conclude that the cluster analysis

cannot be applied for correlating lidar-derived aerosol properties to the airmass origin.

The backward-trajectory analysis also indicates that the Manaus pollution plume did

not affect the lidar observations in 2008 as already discussed in Sec. 3.1. Manaus is

60 km south of the EUCAARI site and thus generally not in the upwind region of the

lidar observations. These findings corroborate the results presented by Kuhn et al.

(2010). The authors showed that the Manaus pollution plume is usually transported

from Manaus to south-westerly directions due to the strong trade winds. During

this transport, the dispersion of the pollution plume was found to be low, so that

only regions directly downwind of Manaus were affected. These trajectory-based

findings are proven by ground-based wind-direction measurements at the EUCAARI

site during 2008 (Rizzo, 2010). Winds from south-east at surface level were reported

only a few times (<20 days). Consequently, our measurements can be regarded as
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representative on a regional scale for central northern Amazonia. No other major

point sources of urban/industrial aerosol are present in this region.

7.2 Overview of optical and geometrical properties

In this Section, the temporal development of the AOD and of the vertical aerosol

structure is discussed. Furthermore, an overview of all derived vertical aerosol profiles

during 2008 is given.

7.2.1 Time series

The temporal evolution of the AOD at 532 nm as measured with PollyXT in 2008 is

shown in Fig. 7.2, top. A clear contrast between the two seasons was found. During

the wet season, AOD values were typically much lower than during the dry season.

Frequently, clean background conditions with an AOD below 0.05 were observed dur-

ing the wet season (see Sec. 6.2). AOD values above the background level (>0.05)

caused by the intrusion of African aerosol (see Sec. 6.1) accumulate in February and

March. The cleanest air conditions tend to occur from April to May. A strong dust

intrusion event mid of May caused the only episode of increased AOD during that

period. AOD values did not exceed 0.25 during that season. The mean wet-season

AOD was found to be 0.08 and was thus three times smaller than the mean dry-season

AOD of 0.26.

In the dry season, a high AOD variability was observed. AOD values ranged from 0.05

(10 August 2008) to 0.55 (11 September 2008). Interestingly, the day-to-day variabil-

ity during this season was almost as high as the seasonal variability in 2008. Highest

AOD values were observed in September and October, when the fire activity east and

thus upwind of the lidar site was highest (see Sec. 2.2). Several lidar observations indi-

cated that the removal of aerosol by short convective precipitation effects is ineffective.

Virtually, no difference in terms of AOD could be observed before and after a shower

event.

Figure 7.2, bottom, shows the temporal development of the AL top, Haer, and HAOD95

in 2008. As defined in Sec. 4.2.5, the AL top defines the height at which the particle

backscatter coefficient at 1064 nm falls below 0.02 Mm−1sr−1 and is thus an absolute

criterion for the vertical aerosol distribution. Haer and HAOD95 are relative criteria for

the extent of the vertical aerosol column and are defined as the height at which the

AOD reaches the 63% and 95% level, respectively, in regard to the total AOD (100%).
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Figure 7.2: Top: Temporal development of the AOD at 532 nm in 2008. Bottom: Time

series of the AL top, HAOD95, and Haer in 2008. The horizontal lines indicate the mean

values for the respective season which are also given in the legend.
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A clear difference in the vertical aerosol distribution is seen in Figure 7.2, bottom,

between the two seasons. The vertical extent of the aerosol column (represented by

the AL top, Haer, and HAOD95) was significant lower in the wet season than in the

dry season. However, HAOD95 shows less seasonal variability than the AL top height.

On average, the AL top in the dry season was 1.5 km higher than in the wet season,

while the mean HAOD95 differs by only 650 m between the two seasons. The seasonal

variation of Haer was found to be very low with a mean difference of 350 m. For the

seasonal mean values in both seasons it was found that AL top > HAOD95 > Haer.

A high in-season variability was observed for the AL top and HAOD95, while the day-

to-day fluctuations of Haer were rather weak. However, neither in the dry nor in the

wet season a general temporal trend concerning the vertical aerosol distribution was

found. Typically, the AL top and HAOD95 were much higher than Haer during both

seasons.

7.2.2 Overview of vertical aerosol profiles

Figure 7.3 shows all particle backscatter coefficient profiles (at 355, 532, and 1064 nm)

that could be evaluated for the wet (top) and dry (bottom) season. The corresponding

mean profile (red) plus standard deviation is presented in addition. All vertical aerosol

profiles were cloud-screened. Due to detector problems, the particle backscatter coef-

ficient at 355 nm could not be determined below 500 m.

A high in-season variability of the particle backscatter coefficient profiles is seen in

Fig. 7.3. In most cases, the vertical distribution of the particle backscatter coeffi-

cient was very inhomogeneous. A strong contrast between the wet and dry season is

again obvious. The profile shape and the magnitude of the particle backscatter coef-

ficient profiles differ significantly for both seasons. During the dry season, frequently

lofted layers of enhanced backscattering occurred. Hygroscopic growth as explained in

Sec. 6.3.3 was the reason for the enhanced backscattering in these layers. Throughout

the entire observation period, aerosol layers above 10 km were not detected.

The mean values of the dry-season particle backscatter coefficient within the ML were

a factor of 2–3 larger than the respective mean values for the wet season. Above the

ML (between 1500 and 2500 m), the dry-season mean values of the particle backscatter

coefficient were even 3–4 times larger than the respective value of the wet season.

The absolute values of the particle backscatter coefficient (and thus aerosol load) varied

significantly from case to case during the dry season. The magnitude of this in-season

variation was as high as the seasonal variation. Absolute differences of the particle
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Figure 7.3: Composite of N vertical profiles of the particle backscatter coefficient during

the dry (top) and wet (bottom) season at 355 (left), 532 (center), and 1064 nm (right). The

red lines show the corresponding mean profiles with the respective standard deviations.
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Figure 7.4: N vertical profiles of the particle extinction coefficient at 355 and 532 nm

in the dry season 2008. The red lines show the corresponding mean profiles with the

respective standard deviations.

backscatter coefficient up to the a factor of 10 were observed in the ML. For instance,

the particle backscatter coefficient at 532 nm at 1 km agl on 3 October 2008 was

0.28 Mm−1sr−1, while it was 2.95 Mm−1sr−1 on 12 September 2008. During the wet

season, absolute differences were much lower and the profile shape was much less vari-

able than during the dry season. Thus, in terms of profile shape the mean wet-season

particle backscatter coefficient profile is more representative than the corresponding

dry-season mean profile.

Absolute maximum values observed during the almost one-year period were

7.7 Mm−1sr−1 at 355 nm and 2 Mm−1sr−1 at 1064 nm. These values were observed

on 28 October 2008 during the dry season. The maximum values observed in the wet

season were 2.65 Mm−1sr−1 at 355 nm and 1 Mm−1sr−1 at 1064 nm observed on

9 May 2008 during an intrusion of African aerosol (see Sec. 6.1).

Figure 7.4 shows all particle extinction coefficient profiles of the dry season 2008 that

could be independently evaluated with the Raman lidar technique (Eq. 4.10). The

extinction coefficient retrieval is limited to values above 1 km due to the incomplete

overlap between the laser beam and the field of view of the telescope (see Sec. 5.1).

Cloud-contaminated data were removed in Fig. 7.4. Wet-season data cannot be pre-

sented because the high frequency of low-level clouds, rain, and fog prohibited temporal
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averaging of the lidar signal for more than 1 hour which is necessary for the determi-

nation of the particle extinction coefficient.

A high in-season variability of the particle extinction coefficient profiles is visible in

Fig. 7.4 in agreement with the findings for the particle backscatter coefficient profiles

for the dry season. Absolute values of the particle extinction coefficient within the ML

varied by a factor of about 10 between 20 Mm−1 and 190 Mm−1 at 532 nm. The mean

dry-season value in the height range below 2000 m was 143± 71 Mm−1 at 355 nm and

88±44 Mm−1 at 532 nm. Between 2000 and 2500 m, mean values of 103±64 Mm−1 at

355 nm and of 60± 39 Mm−1 at 532 nm were recorded. Maximum particle extinction

coefficient values of 450 Mm−1 and 300 Mm−1 at 355 and 532 nm, respectively, were

observed.

The observed inter-seasonal and in-season behavior of the lidar-derived optical aerosol

properties is in good agreement with findings from measurements of optical aerosol

properties in Alta Floresta, Rondônia, southern Amazonia (Guyon et al., 2003). There,

also a high day-to-day variability during the dry season was observed as well as a strong

contrast between the wet and the dry season. However, the magnitude of the observed

variation of the optical aerosol properties was much lower at the lidar site. Thus, one

may conclude that the lidar location is less affected by pollution (BBA) than regions

in southern Amazonia.

7.3 Statistical analysis

In this Section, statistical results of the aerosol properties based on the entire set of

measurements in the wet and dry season 2008 are shown. First, frequency distributions

of the AOD and a comparison to different AERONET observations are discussed. Af-

terwards, statistics concerning the vertical aerosol structure are presented, and finally

aerosol-specific (intensive) properties are discussed. As already mentioned above, the

independent retrieval of the particle extinction coefficient profiles was possible only for

the dry season. Thus, the statistical analysis of extinction-related aerosol properties

is restricted to this season.

7.3.1 AOD

The frequency distribution of the lidar-derived AOD (532 nm) for the wet and dry

season is shown in Fig. 7.5. A significant difference in the shape of the AOD frequency

distribution was observed.
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Figure 7.5: Frequency distribution of the lidar-derived AOD for the wet (left) and dry

(right) season 2008. N observations were analyzed.

Typical AOD values in the dry season ranged from 0.1–0.4 while in the wet season the

AOD was usually below 0.2. The maximum AOD was 0.55 measured on 11 Septem-

ber 2008. AOD values below 0.1 were observed in only 7% of all cases during the

dry season. Background conditions (AOD < 0.05, cf. Sec. 6.2) were never measured

during this season. In contrast to the dry season, the wet-season AOD was always

below 0.26. In more than 46% of all cases, background conditions were prevailing.

AOD values above 0.15 occurred in about 19% of all cases.

In the following, an intensive comparison between the lidar-derived AOD and

AERONET sun photometer measurements made at different locations in the Amazon

Basin before 2008 is presented. AERONET sun photometer observations were

performed from 1999 to 2002 at Balbina, only ca. 100 km north-east of the lidar

site. For comparison, the frequency distributions of the daily mean AOD at Balbina

(AERONET Level 2.0 data)2 are shown in Fig. 7.6. The daily AOD averages could

be obtained from 123 wet-season and 435 dry-season days between 1999 and 2002.

In general, a good agreement was found between the two measurement campaigns

(compare lidar AOD frequency distribution in Fig. 7.5). Lidar-derived mean values at

532 nm are 0.26±0.12 in the dry season and 0.08±0.07 in the wet season, whereas the

photometer-derived values at 500 nm are 0.24± 0.13 in the dry season and 0.11± 0.07

in the wet season. An AOD higher than 0.43 was never observed in the wet season

2downloaded from http://aeronet.gsfc.nasa.gov, site name: Balbina
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Figure 7.6: Frequency distribution of the AERONET AOD obtained from N daily mean

values in the wet and dry season between 1999 and 2002 at Balbina (100 km north-east

of the lidar site).

at Balbina, which is in agreement with the lidar AOD observations. The shape of

the lidar AOD frequency distribution in the wet season is different to the AERONET

one. In the case of the lidar observations, the AOD frequency distribution peaks

between 0 and 0.05, whereas the AERONET distribution peaks between 0.05 and

0.1. This may partly be caused by the different measurement techniques. The sun

photometer cannot determine the AOD under cloudy conditions. In addition, cases

with subvisible thin cirrus may have introduced a positive bias. On the other hand,

lidar allows the measurement of the AOD shortly after rainfall events when the AOD

is rather low. This is usually not possible with sun photometer.

The dry-season AOD frequency distribution of AERONET is broader than the

respective one for the wet season. Thus, highly variable aerosol conditions were

observed in this region also between 1999–2002. The photometer-derived AOD

frequency distribution is similar to the lidar-derived AOD frequency distribution in

the dry season 2008 (Fig. 7.5, right). Only minor deviations can be seen, e.g., for the

frequency of AOD between 0.2–0.3. One can thus conclude that the general aerosol

conditions did not significantly change between 1999–2002 (AERONET observations)

and 2008 (PollyXT observations).

Schafer et al. (2008) analyzed several years of AERONET observations at 15 sites
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Lidar 2008 0.06 0.10 0.09 0.05 0.07 – – 0.18 0.29 0.25 – –

AERONET 0.14 0.11 0.12 0.09 0.10 0.08 0.10 0.18 0.26 0.37 0.36 0.33

Table 7.1: Monthly mean AOD values at 532 nm as derived by lidar in 2008 and from

AERONET observations in the northern forest region as published by Schafer et al.

(2008). The AERONET AOD was converted from 440 nm to 532 nm by using the

published monthly mean Ångström exponent.

(including Balbina) in Amazonia between 1999 and 2006. Monthly mean AOD values

at 440 nm were presented for the cerrado region, southern forest region, and the

northern forest regions (the region of the EUCAARI lidar site). For comparison

with the lidar, the AERONET AOD was converted from 440 to 532 nm by using

the published monthly mean Ångström exponent. The final comparison at 532 nm is

shown in Table 7.1. Monthly mean AOD values from the lidar measurements and the

AERONET observations in the northern forest region are given.

For the dry-season months, a good agreement of the mean AOD was found between

the lidar and the AERONET observations. Schafer et al. (2008) reported a moderate

AOD of 0.175 (after conversion to 532 nm) in August, which is in perfect agreement

with the monthly mean AOD of August 2008 obtained from the lidar observations.

Also the mean values of the AERONET AOD for September of 0.29 was almost equal

to the lidar-derived mean AOD value of 0.26. However, the monthly mean value

of the AERONET AOD for October of 0.37 (532 nm) was considerable higher than

the value measured by lidar at this time of the year. This discrepancy could be due

to different locations, since the authors included also measurement sites east of the

lidar site. These areas are more populated and a high fire activity is observed in

October/November.

For the wet season, Schafer et al. (2008) reported AOD values between 0.1 and 0.14

(532 nm) in the northern forest region. This is much higher than observed with the

lidar (0.05–0.1 at 532 nm). A stronger influence of African aerosol to the AERONET

sites east of the lidar location as well as the different measurement methodology as

discussed above could be the reason for that.

The study conducted by Schafer et al. (2008) also revealed that there are significant

differences in the aerosol load (AOD) between different regions in the Amazon

Basin (northern forest, southern forest, and cerrado) during the dry season. Most

of the recent campaigns (e.g., SCAR-B, LBA-EUSTACH, LBA-SMOCC – compare



128 SEASONAL ANALYSIS

Table 2.1) were conducted in southern Amazonia, where a higher aerosol variability

and a much higher burning activity than in the northern part was observed. In

addition, the burning season peaks at different times in the southern and northern

forest regions. This is the reason why at the lidar location the aerosol load is highest

in October whereas in southern Amazonia, e.g., as reported by Guyon et al. (2003),

it is in August. These regional differences must be kept in mind when comparing

the results from the lidar campaign to findings from previous research activities in

Amazonia.

7.3.2 Vertical aerosol structure

Figure 7.7 shows the frequency distribution of the AL top, Haer, and HAOD95 derived

from the lidar profiles in the wet and dry season 2008. A pronounced difference in

the AL top frequency distribution of the dry and wet season was found. The AL top

frequency distribution was narrower in the wet season compared to the dry season.

Most frequently, the AL top was between 2 and 3 km in the wet season and between

3 and 5 km in the dry season. The AL top did not exceed 3.45 km in the wet season,

while it reached up to 6.14 km in the dry season. According to the AL top, aerosol was

always present up to at least 1.3 and 2.7 km in the wet and dry season, respectively.

Compared to the AL top, the frequency distribution of HAOD95 shows only a weak

difference between the wet and dry season. HAOD95 was most frequently observed be-

tween 2 and 3 km in the wet season and between 2.5 and 3.5 km in the dry season.

Maximum values of HAOD95 were 3.8 and 4.4 km in the wet and dry season, respec-

tively. Consequently, the majority of the aerosol load (95% of the AOD) was measured

below 4 km in both seasons. With respect to the discrepancy to the observed AL tops,

one may conclude that only thin layers of aerosol are above 4 km during the dry sea-

son.

For completeness, the frequency distributions of Haer are also shown in Fig. 7.7. Only

little seasonal differences can be seen for the frequency distribution of Haer. A very

narrow distribution was observed for both seasons. Haer never exceeded 2.52 km, im-

plying that two thirds of the AOD were always caused by aerosol below that height.

Most frequently values of Haer were between 0.5 and 1.5 km in the wet and between 1

and 2 km in the dry season. Haer did not exceed 2.1 km during the wet season. Thus,

one may conclude from the frequency distribution that two thirds of the AOD (see

definition of Haer in Sec. 4.2.5) are usually trapped in the lowermost 2 km.

It is interesting to know wether the vertical extent of the aerosol layer depends on the
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Figure 7.7: Frequency distribution of AL top, HAOD95, and Haer for the wet season

(left) and dry season (right). The number of the used profiles (N ) differs.
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Figure 7.8: AL top height and HAOD95 as function of the AOD at 532 nm for the dry

season 2008. The respective linear regression together with the corresponding formula

and the correlation coefficient are drawn as well.

aerosol load. An attempt to study this relation is shown in Figure 7.8. The corre-

lation between the measured AOD and the derived AL top and HAOD95 is presented.

However, only a weak correlation was found between the AOD and the depth of the

entire aerosol layer (correlation coefficient R2 of 0.54 and 0.32 for the AL top and

HAOD95 relationship, respectively). Thus, the aerosol layer depth is not a function

of the AOD. This means, no conclusions about the vertical aerosol structure (distri-

bution) in Amazonia can be drawn from column-integrated measurements (e.g., sun

photometer observations). This finding of the lidar measurements agrees well with

findings reported by Browell et al. (1988) from 11 observation flights made in the dry

season 1985 in northern Brazil near the Amazon river. An airborne DIAL (Differen-

tial Absorption Lidar, Browell et al., 1983) was used for vertically resolved ozone and

aerosol profiling. It was found that significant amounts of aerosol were above the ML

but its vertical distribution was very inhomogeneous.

An attempt to analyze the vertical aerosol distribution in more detail is discussed in

the following. For this purpose, the AOD of the ML (AODML) is compared to the AOD

of the entire vertical column. The maximum height of the ML top as derived from

ECMWF for the day before the measurement (see Sec. 4.2.5) was used to determine

AODML. The ratio of the AODML to the total AOD (AOD ratio) is then used as a

measure for the vertical aerosol distribution. An AOD ratio of 0.3 indicates that 30%
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Figure 7.9: Frequency of occurrence of the AOD ratio (ratio between the AODML and

the total AOD) for the dry season 2008.

of the aerosol load are within the ML, while an AOD ratio of 1 means that 100% of

the aerosol are within the ML.

Figure 7.9, shows the AOD ratio at 532 nm for the dry season in 2008. It is evident that

in more than one half of the dry-season cases the contribution of aerosols above the

ML to the total AOD is >40%. Only in about 15% of all cases, ML aerosol contributed

more than 80% to the total AOD. In about one third of all dry-season measurements,

the contribution of ML aerosol to the AOD was between 60% and 80%.

As can be seen in Fig. 7.10, left, a correlation of the modeled ML top with the mea-

sured AOD is not given. This means that the total aerosol load is independent of local

mixing processes. However, the AOD ratio is well correlated with the height of the ML

top (Fig. 7.10, right). The solid line in Fig. 7.10, right, is obtained in the ideal case of

a height-independent particle extinction coefficient within the aerosol layer from the

surface to the AL top. This means that in this ideal case no differences in terms of

aerosol conditions exist below and above the ML top.

According to Fig. 7.10, right, one can conclude that the contribution of ML aerosol to

the AOD is high when the ML top is high. Thus, the ideal case of a particle extinction

coefficient profile independent of the ML top is nearly valid for the vertical aerosol

distribution in Amazonia during the dry season. Therefore, one can conclude that

the thermal stratification in the lower troposphere (i.e., the development of the ML)

has only a small influence on the vertical spreading of BBA. Obviously, hot smoke

plumes can easily be transported above the ML as a result of pyro-convection and
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Figure 7.10: Left: AOD as a function of the ML top. Right: Correlation between the

AOD ratio (ratio of AODML to total AOD) and the ML top. Linear regression lines plus

corresponding formulae with correlation coefficients are shown in addition.

shallow convection. As a consequence, a high aerosol load can be found above the

ML top throughout the dry season. One may thus conclude that in contrast to mid-

latitudes, the ML top in Amazonia is not a strong boundary for vertical transport

processes. These findings corroborate results from airborne measurements during the

dry season in Rondônia presented by Guyon et al. (2005). No differences in the aerosol

characteristics within the ML and above the ML were found.

7.3.3 Aerosol properties

The frequency distribution of the maximum extinction coefficient of each single

aerosol profile of the dry season is shown in Fig. 7.11. Typically, the maximum

particle extinction coefficient was observed within the ML. In 28% of all cases, the

maximum particle extinction coefficient was between 150 and 200 Mm−1 at 355 nm.

In 13% of all cases, values above 300 Mm−1 could be observed. Regarding maximum

values of particle extinction coefficient at 532 nm, most frequently values between 50

and 150 Mm−1 were measured.

Guyon et al. (2003) presented results from in-situ measurements performed above

the canopy level in Alta Floresta, Rondônia, in 1999. Scattering and absorption

coefficients (at 545 and 565 nm, respectively) for dried aerosol particles were measured.

For the wet season, the authors reported extinction coefficients of 3–17 Mm−1, while
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Figure 7.11: Frequency distribution of the maximum extinction coefficient of N indi-

vidual aerosol profiles at 355 (left) and 532 nm (right) during the dry season 2008.

during the dry season, extinction coefficients up to 650 Mm−1 were observed. This is

about 5 times higher than the mean maximum extinction coefficient measured with

lidar at 532 nm under ambient conditions in 2008. These findings show again that

Rondônia in southern Amazonia is under much higher BBA influence than the lidar

site in the northern forest.

Fig. 7.12 shows the statistical analysis of the lidar ratio at 355 and 532 nm for the dry

season 2008. Mean values for the height range from 1500–2500 m were analyzed. The

presented values are thus independent of overlap corrections (see Sec. 5.1) and are

representative for the aerosol layer characteristics in the dry season (AL top always

above 2500 m, compare Fig. 7.7).

As can be seen in Fig. 7.12, lidar ratios between 20 and 80 sr at 355 nm and between

20 and 90 sr at 532 nm were observed. Most frequently, the values at 355 nm were

between 50 and 70 sr (in 61% of all cases) and at 532 nm between 50 and 80 sr (in

71% of all cases). In about 42% of the cases, the lidar ratios at 532 nm exceeded 70 sr

and thus indicate the presence of strongly absorbing smoke particles. In comparison

to lidar-ratio frequency distributions of urban haze observed at Leipzig (mean value

of 58 ± 12 sr at 355 nm and 53 ± 11 sr at 532 nm, Mattis et al., 2004; Müller

et al., 2007b), the frequency distributions observed during the BBA-dominated dry

season in Amazonia are shifted towards higher values (mean value of 62 ± 12 sr at

355 nm, 64 ± 15 sr at 532 nm). Because backscatter and extinction properties of
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Figure 7.12: Frequency distributions of the lidar ratio at 355 (left) and 532 nm (right)

at 1500–2500 m retrieved from N observations in the dry season.

particles sensitively depend on both absorption efficiency and particle size distribution

characteristics, the higher mean lidar ratio in Amazonia may be related to smaller

and stronger absorbing particles. However, the wide spread of lidar-ratio values from

20–90 sr reflects the influence of aging and in-cloud processes of the particles that can

significantly alter the BBA optical properties. Different burning types (flaming and

smoldering) and different fuels could also be a reason for the high variability in the

lidar-ratio data set.

The observations of low lidar ratios (i.e., below 50 sr) always coincided with a low

aerosol load as shown in Fig. 7.13. According to this figure, lidar ratios (532 nm)

<50 sr were only observed when the average particle extinction coefficient between

1500 and 2500 m was below 50 Mm−1. For these cases of low aerosol load, the BBA

influence is weak and also other aerosol types determine the aerosol optical properties.

Lidar-ratio values >50 sr do not show any correlation to the aerosol load, even though

very high average particle extinction coefficients >100 Mm−1 were rare.

Figure 7.14 shows the frequency distribution of the lidar-derived Ångström ex-

ponents for the dry and wet season. In the wet season, only the analysis of the

backscatter-related Ångström exponents was possible. In consistence with the

lidar-ratio analysis, mean values for the height range between 1500 and 2500 m are

presented.
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Figure 7.13: Lidar ratio at 532 nm as a function of the mean particle extinction coeffi-

cient at 532 nm between 1500 and 2500 m.

A clear seasonal difference concerning the frequency distribution of the backscatter-

related Ångström exponent was observed. In the dry season, the frequency distribution

of the backscatter-related Ångström exponent shows a sharp maximum between 1

and 1.5 (for about 60% of all cases). Observations of backscatter-related Ångström

exponents below 0.5 or above 2 were rare in that season. In contrast, the frequency

distribution of the backscatter-related Ångström exponent in the wet season is very

broad. Obviously, very different aerosol types with different optical properties crossed

the lidar site. As shown in Sec. 6.1 and Sec. 6.2, aged BBA from Africa, Saharan

dust, and background aerosol were identified with PollyXT in the wet season. On the

other hand, BBA particles originating from fires on the South American continent

were dominating during the dry season.

The frequency distribution of the extinction-related Ångström exponent during the

dry season is shown in Fig. 7.14 (upper right panel). In most cases (more than

70%), an Ångström exponent between 0.5 and 1.5 was observed. Extinction-related

Ångström exponents >1.5 were measured in 19% of all cases, whereas values <0.5

were only rarely found. Similar values were observed by Schafer et al. (2008) for

the northern forest regions from AERONET observations. In the southern forest

and cerrado regions, however, the authors report a frequent occurrence of Ångström

exponents above 1.5 during the dry season. Guyon et al. (2003) even reported

Ångström exponents above 2 over Alta Floresta, southern Amazonia. Because the
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Figure 7.14: Frequency distributions of the mean Ångström exponents derived from N

observation cases. Values of the Ångström exponent related to the backscatter coefficient

at 355 and 532 nm (left), to the backscatter coefficients at 532 and 1064 nm (center), and

to the extinction coefficients at 355 and 532 nm (right) between 1500 and 2500 m agl for

the dry (top) and wet (bottom) season are shown.

Ångström exponent is sensible to the particle size distribution, these high values

indicate the dominance of small particles. Most obviously, different or younger smoke

prevails in southern Amazonia compared to northern Amazonia as a result of the high

fire activity related to deforestation and pasture maintenance.

The frequency distribution of the daily mean Ångström exponent derived at Balbina

from AERONET observations between 1999 and 2002 is shown in Fig. 7.15. A good

agreement between the lidar measurements in 2008 (compare Fig. 7.14) and these sun

photometer measurements is found. During the dry season at Balbina, an Ångström

exponent between 1 and 1.5 could be observed in more than 60% of all observations.

Extinction-related Ångström exponents within this range were observed with PollyXT

in 44% of all cases during the dry season 2008.
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Figure 7.15: Frequency distribution of the Ångström exponent of the AOD at 380 and

500 nm from three years of AERONET observations at Balbina. N daily mean values in

the wet and dry season were used.

In the wet season, a broad distribution of the Ångström exponent with values from 0

up to 2.5 was detected at the AERONET site. This supports our and previous findings

that the aerosol regimes are completely different in northern central Amazonia during

the two seasons. Whereas the dry season is dominated by one aerosol species (BBA),

during the wet season various aerosol mixtures (different types, i.e., background,

smoke, dust) can be observed.

Finally, a summarizing overview of the lidar observations during the wet and

dry season 2008 is presented in Table 7.2. Mean values and respective standard

deviations for the aerosol properties discussed in this Chapter are given. Values are

presented for the entire vertical column, for the mixing layer, and for the lofted layer

between 1500 and 2500 m.
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Quantity Dry Season Wet season

Total vertical profile

AOD (355 nm) 0.383± 0.167 0.129± 0.059

AOD (532 nm) 0.256± 0.115 0.080± 0.065

AL top 4.05± 0.75 km 2.47± 0.54 km

Haer 1.60± 0.32 km 1.23± 0.34 km

HAOD95 2.96± 0.53 km 2.31± 0.55 km

ML top 1.46± 0.42 km 1.10± 0.29 km

Max. α (355 nm) 200± 95 Mm−1 -

Max. α (532 nm) 119± 59 Mm−1 -

Max. β (355 nm) 3.54± 1.60 Mm−1sr−1 1.21± 0.57 Mm−1sr−1

Max. β (532 nm) 2.17± 1.12 Mm−1sr−1 0.71± 0.52 Mm−1sr−1

Max. β (1064 nm) 0.79± 0.37 Mm−1sr−1 0.32± 0.26 Mm−1sr−1

Mixing layer

β (355 nm) 2.63± 0.99 Mm−1sr−1 1.18± 0.52 Mm−1sr−1

β (532 nm) 1.44± 0.69 Mm−1sr−1 0.62± 0.50 Mm−1sr−1

β (1064 nm) 0.50± 0.21 Mm−1sr−1 0.24± 0.26 Mm−1sr−1

1500–2500 m

α (355 nm) 118± 64 Mm−1 -

α (532 nm) 70± 38 Mm−1 -

β (355 nm) 1.83± 1.15 Mm−1sr−1 0.41± 0.33 Mm−1sr−1

β (532 nm) 1.09± 0.67 Mm−1sr−1 0.30± 0.35 Mm−1sr−1

β (1064 nm) 0.48± 0.20 Mm−1sr−1 0.13± 0.18 Mm−1sr−1

Lidar ratio (355 nm) 62± 12 sr -

Lidar ratio (532 nm) 64± 15 sr -

åα355/532
1.17± 0.44 -

åβ355/532 1.27± 0.34 1.22± 0.59

åβ532/1064 1.16± 0.27 1.19± 0.36

Table 7.2: Mean value and standard deviation of the lidar quantities derived in the dry

and wet season 2008. Values for the total profile, within the ML (ECMWF), and for

1500–2500 m are presented. å = Ångström exponent, α = particle extinction coefficient,

β = particle backscatter coefficient.
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Chapter 8

Summary, conclusion, and outlook

Continuous lidar measurements were performed in the Amazon rain forest for

almost one year in 2008. The results of the lidar observations were presented in

this dissertation. These measurements are the first long-term observations of the

vertical aerosol structure ever made in the Amazon Basin. The advanced lidar

observations were conducted 60 km north of Manaus in the central northern part

of Amazonia. The area is widely covered with pristine rain forest. A HYSPLIT

backward-trajectory analysis showed that the observations were representative on a

regional scale for the central northern part of the Amazon rain forest. The general

weather conditions in this region are characterized by a wet (December–June) and a

dry season (July–November). During the dry season, a high fire activity occurs in

Amazonia, which heavily influences the atmospheric conditions.

The lidar measurements were conducted with the automated multiwavelength-Raman-

polarization lidar PollyXT . With this instrument, vertical profiles of the particle

backscatter coefficient at 355, 532, and 1064 nm, of the particle extinction coefficient

at 355 and 532 nm, and of the particle linear depolarization ratio at 355 nm can

be determined. Lidar observations near Manaus could be performed on 211 days

from January to November 2008. A data coverage of 72% could thus be achieved.

Nevertheless, instrumental problems and unfavorable weather conditions during the

campaign were the reason that the full data set (all PollyXT products) was available

for 60 days only (mostly in the dry season).

As part of this thesis, several efforts were undertaken for PollyXT to meet hardware

and software standards of EARLINET. Calibration procedures were performed and

correction schemes (e.g., overlap correction and polarization correction) were applied

to assure a high quality of the determined aerosol properties. These efforts as well
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as comparisons to other lidars during the EARLI09 campaign showed that the newly

constructed PollyXT was well designed and set up so that the measured signal profiles

and derived aerosol properties were of high quality.

The results from the long-term lidar observations performed in Brazil contain a

lot of new information about the aerosol conditions in the central northern Amazon

Basin and corroborate certain findings from former aerosol measurements in Amazo-

nia. It was shown for the first time that advection of Saharan dust together with BBA

from Africa occurred regularly throughout the wet season. In about one third (32%)

of all lidar observations during the wet season, African aerosol was dominating the

optical aerosol properties in Amazonia. The analysis of the vertical aerosol structure

during such events revealed that the African aerosol arriving in the central northern

Amazon Basin was usually trapped in the lowermost 3–3.5 km of the troposphere.

To quantify the amount of Saharan dust and African smoke transported towards

the lidar site, the dust contribution to the measured optical aerosol properties was

separated by means of the measured particle depolarization ratio. This study led to

the result that in about one half of the cases with African aerosol advection, smoke

particles contributed to more than 50% to the total AOD. The smoke transport from

Africa towards Amazonia occurred predominantly between January and April when

the fire activity in Central Africa was highest. BBA is thus a major constituent of

the aerosol plumes that are regularly transported from Africa towards Amazonia.

This is a key finding of the presented study. However, the transport mechanisms are

not fully understood in terms of cloud processing and wet deposition. Furthermore,

consequences of the transport of mixed aerosol on radiation transfer and cloud

formation in the Amazon Basin but also on the Atlantic Ocean remain to be clarified

by means of, e.g., atmospheric modeling.

From former experiments in Amazonia, it was reported that the aerosol load during

the wet season is very low and probably free of anthropogenic influence (Pöschl

et al., 2010; Martin et al., 2010a; Rissler et al., 2004). These findings were partly

confirmed by the lidar measurements. During clean conditions, an AOD (532 nm)

of less than 0.05 was observed and the aerosol was trapped in the lowermost 2 km

of the troposphere. However, the analysis of the long-term data set revealed that

these clean atmospheric conditions occurred in only 48% of all wet-season cases. One

example for such background conditions was intensively discussed and it was shown

that a major meso-scale rain event occurred in the Amazon region at the same time.
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This precipitation event was possibly partly responsible for the very low aerosol load.

Thus, further investigations on the role of precipitation events on background aerosol

conditions are needed.

Two case studies from the dry season were presented for which BBA dominated the

optical properties. In the first case, a comparable high aerosol load (AOD of 0.41)

prevailed while in the second one, a medium aerosol load (AOD of 0.15) was observed.

Aged BBA advected from regions south of the lidar site were identified to be the

dominant aerosol species for both cases. However, very different geometrical, optical

and microphysical properties of BBA (e.g., vertical layering, lidar ratio, Ångström

exponent, effective radius, SSA) were observed on both days. In the first case, aerosol

was present up to about 4.5 km. Extinction-related Ångström exponents of about 1

and lidar ratios between 70 and 90 sr were found at different heights for the smoke

aerosol. Effective particle radii ranged from 0.21 to 0.34 µm. The BBA was highly

absorbing (SSA of 0.81) at heights of the highest RH (85%), whereas above under dry

conditions (RH=50%) only moderate absorption (SSA of 0.93) was detected.

In the second case, smoke was detected up to 4.5 km, and Ångström exponents of

about 2 and lidar ratios of 45–55 sr were measured in the aerosol layers. Effective

particle radii of about 0.13 µm revealed that smaller particles were observed. The

BBA was only moderately absorbing indicated by SSA values between 0.92 and 0.94.

The reason for the differences in the smoke properties could be the shorter travel time

to the lidar site (<24 h), different aging processes (e.g., cloud/rain processing), or

different burning conditions. In both cases, no depolarizing effects of the BBA could

be observed.

The effect of hygroscopic growth on the optical aerosol properties was explained

for smoke aerosol in a third case study. The extensive optical properties increased

by a factor up to 7.5 due to hygroscopic growth. The intensive optical properties

(lidar ratio, Ångström exponent), however, did not show any significant change in

dependence of the relative humidity. The hygroscopic growth of BBA observed by

lidar was stronger than the one found in previous studies concerning Amazonian

BBA (Kotchenruther and Hobbs , 1998) but weaker than hygroscopic growth of urban

aerosol (Skupin et al., 2010). However, further investigations are needed to study the

hygroscopic growth behavior under conditions of high RH (close to 100%), ideally

with aerosol and humidity profiling at the same location. Nevertheless, this study

showed that humidification effects of BBA cannot be neglected and has to be kept in

mind when interpreting aerosol observations.
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The strong contrast between the aerosol conditions in the dry season and the

wet season were confirmed by the statistical analysis of all lidar observations in 2008.

Due to the high BBA concentration in the atmosphere, the mean AOD of the dry

season was found to be a factor of 3 higher than the mean AOD of the wet season

(0.26 compared to 0.08 at 532 nm). Maximum AOD values were less than 0.55 (at

532 nm) and hence show that the lidar location was not in the direct vicinity of

fire events. In only 7% of all cases in the dry season 2008, an AOD below 0.1 was

observed. Also the maximum extinction and backscatter coefficient values in the dry

season 2008 were 2–3 times higher than during the wet season of this year.

The vertical aerosol distributions differ also significantly between the two seasons. In

the wet season, the aerosol was mostly trapped in the lowermost 2.5 km, while in the

dry season aerosol typically reached up to 4.5 km. Aerosol was occasionally detected

up to 6.14 km in the dry season. The majority of the aerosol (95% of the AOD),

however, was found to be on average below 2.3 km in the wet season and below 3 km

in the dry season. During the wet season, lofted aerosol layers and multiple aerosol

stratification was less frequent than in the dry season. The extent of BBA plumes

during the dry season showed no correlation to the ML top height. Virtually uniform

smoke haze layers were observed up to the AL top. Thus, pyro-convection and/or

cloud-related mixing seem to be the major processes for the vertical distribution of

BBA.

The statistical analysis of the intensive aerosol properties corroborates the different

aerosol conditions in the different seasons. Highly variable backscatter-related

Ångström exponents (0.3–2.5) in the wet season revealed that different aerosol types,

i.e., Saharan dust, aged BBA from Africa, and background aerosol dominated the

Amazonian aerosol population. In contrast, a relatively narrow frequency distribution

of the backscatter-related Ångström exponent in the dry season (mostly between 1

and 1.5) showed that only one aerosol species, namely BBA, was dominant during

this season. This result validates findings from Guyon et al. (2003). However, optical

and microphysical properties of BBA were comparably variable in the dry season

2008 as a result of different burning types, different transport times, different aging

processes etc. For example, typical lidar ratios at 532 nm ranged between 60 and

80 sr. The analysis of the extinction-related Ångström exponent revealed that the

smoke which arrived at the lidar site was usually aged by more than one day. This

result corroborates findings from sun photometer measurements made in Brazil during
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the dry season in the 1990s (Holben et al., 1996b).

The results of the first long-term observations of height-resolved aerosol proper-

ties in the entire Amazon Basin presented here are promising and valuable for the

understanding of aerosol effects on climate. Nevertheless, more long-term measure-

ments at several locations are needed in this area which is half as large as Europe.

For example, there is still a lack of knowledge how far African aerosol is advected

into the Amazon Basin and how the smoke of vegetation fires in South America is

distributed in entire Amazonia. The effects of in-cloud processing and wet scavenging

on the aerosol during such transport events are rather unknown. Thus, investigations

of the effectiveness of cloud and precipitation events on particle removal from the

atmosphere should be one main focus of future research in Amazonia.

The Amazon Basin is one of a few continental regions in the world where warm

precipitation (rain without ice phase) can occur. The strong contrast in the aerosol

conditions between the wet and dry season – as was shown in this thesis – under

similar meteorological conditions (compared to the mid-latitudes) thus favors future

investigations of the effect of aerosol on clouds and precipitation (indirect aerosol

effect) in this part of the world. Furthermore, the pronounced regional differences

in the aerosol load during the dry season allow the study of microphysical cloud

properties in a disturbed and undisturbed atmosphere under the same meteorological

conditions. The Amazon Basin is thus an exquisite laboratory for future investigations

of aerosol-cloud-climate interactions.
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Appendix

A Optical properties of atmospheric molecules

For the determination of the molecular backscatter and extinction coefficient, the verti-

cal profiles of pressure and temperature are needed. If no radiosonde data is available,

these profiles are calculated according to the US standard atmosphere (Eltermann,

1968). For the cases shown in this work, a sounding from Manaus airport was always

available, but for completeness the formulae are given in the following.

The temperature T at the height z is given by

T = T0 − 0.0065H, (8.1)

where H is the geopotential height

H =
6356766z

6356766 + z
. (8.2)

This allows the calculation of the pressure p by

p = p0exp

(
9.80665

287.05072 (−0.0065)
ln
T0

T

)
. (8.3)

Here T0 and p0 are the temperature and pressure at surface level.

Having vertical profiles of T and p, the calculation of optical properties follows (Bu-

choltz , 1995). First, the refractive index of air ns is calculated by

(ns − 1) 108 =
5791817

238.0185− λ−2
+

167909

57.362− λ−2
, (8.4)

where λ is given in µm. The Rayleigh cross section σ is then determined by

σ =

(
24π3 (n2

s − 1)
2

λ4N2
s (n2

s + 2)2

)(
6 + 3dmol

6− 7dmol

)
. (8.5)
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Here, λ is given in cm. dmol is the wavelength-dependent molecular depolarization

factor of air, and Ns is the molecular number density for standard conditions at ps =

1013.25 hPa and Ts = 288 K. For dmol, values as listed in Bucholtz (1995) are used.

This yields to the molecular extinction coefficient

αmol
λ (z) = σN(z) = σNs

Tsp(z)

T (z)ps
. (8.6)

N(z) is the number density of molecules at the height z. The molecular backscatter

coefficient is finally calculated by

βmol
λ (z) = αmol

λ (z)Smol, (8.7)

with the molecular lidar ratio (Miles et al., 2001)

Smol =
8π

3

(
1 +

dmol

2

)
sr. (8.8)

B Dark measurement test

Correct photon counting and correct background subtraction are essential for the de-

termination of high-quality aerosol properties from lidar measurements. Figure 8.1

illustrates the setup for photon counting in PollyXT from the optical detection to

the electronic counting. First, the PMT converts the detected photons to electronic

PMT Preampli�er DAQ

Figure 8.1: Schematic illustration of electronic devices for photon detection in PollyXT .

pulses. These pulses are amplified by a preamplifier (Model: Philips Scientific Fast

Pulse Preamplifier 6954), before they are counted by the DAQ (Model: Fast ComTec

7882). In the 1064 nm channel, photon counting is performed without a preamplifier.

Hence, the counting of backscattered photons is not only an optical issue (i.e., the

adjustment of the optical units) but also an electronic one.

During the operation of PollyXT , it was found that this counting setup is sensible to

laser-induced electromagnetic pulses. To assure correct counting by the DAQ, the dis-

criminator (threshold) levels of the DAQ have to be set in such a way that almost no

noise but all photon-induced pulses are counted. These levels are threshold voltages
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that have to be exceeded before a single pulse is counted.

Therefore, several so-called dark measurement tests were performed in Brazil. For

these tests, the laser beam is dumped so that no light is emitted into the atmosphere

and only background light is measured. The data is recorded under usual atmospheric

conditions by the DAQ. For an ideal system, the counting of the range-independent

background light should give a straight line at a certain background value in the verti-

cal profile of the raw signal. Example results from such a dark measurement test with

PollyXT for different discriminator levels are shown in Fig. 8.2. Obviously, in some

channels the achieved straight line could not be observed for all discriminator levels,

e.g., in the UV channels for a threshold of –5 mV or in the 607 nm channel for –10 mV.

Hence, no height-independent background is measured during real measurements when

these wrong discriminator levels are used. This causes problems in the data retrieval

due to wrong background subtraction.

During the campaign in Brazil, several background tests were performed until the final

adjustments were found. Discriminator levels of –15, –15, –20, –55, –20, and –32 mV

for the 355, 355s, 387, 532, 607, and 1064 channel, respectively, have been used to

minimize these electronic problems.

The dark measurements for these levels are shown in the lower right panel in Fig. 8.2.

A straight line and thus height-independent background was observed for all channels.

The increased signal in the lowermost profile of the 1064 channel is most obviously

caused by an incomplete laser beam dumping and thus is caused by reflected light.

Hence, height-independent background is also measured for the this channel.

C Laser polarization characterization

The manufacturer of the laser used in PollyXT states that the emitted light is com-

pletely linear-polarized. Nevertheless, a test was performed to check this issue. Since

we use several optical elements until the laser beam is emitted into the atmosphere, it

is necessary to characterize the laser beam after it has passed all optical units. There-

fore, the apparatus to measure the polarization properties was installed behind the

quartz plate on the roof of the lidar (see Fig. 3.4).

Figure 8.3 shows a photo of the measurement setup. The polarization characteristics of

the emitted light where measured as follows: First, the laser beam (already expanded

to 55 mm diameter) was attenuated by a neutral-density filter to protect the optical

elements in the apparatus. Afterwards, the light beam passed an adjustable polariza-
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Figure 8.2: Dark measurement performed with PollyXT in Brazil on 26 and 29 February

and 28 July 2008. Vertical profiles of raw signals for the six photon-counting channels

are shown. The discriminator levels for the channels are given at the top of each plot.

UV: 355, 355s, and 387 channel. VIS: 532 and 607 channel.

tion filter that allows only light of one certain polarization plane to pass. The filter

is rotatable via a remotely controlled motor so that all possible polarization planes

could be set. Behind this filter, the beam had to pass an interference filter to measure

only the investigated wavelength (either 355 or 532 nm). The laser power for the

different polarization angles was then measured with a commercial power meter. The

interference filter had to be changed for the measurement at a different wavelength.

Hence, the apparatus had to be removed for filter changing. During this procedure,

no focus was put on identical replacements of the apparatus since this is not necessary

for data analysis. Consequently, the measured polarization-plane angle (with respect

to the motor control) is shifted between the two wavelengths. For the experiment, the

polarization plane of the polarization filter was changed from 0◦ to 350◦. The received

laser power was then measured for several angles.

Figure 8.4 shows the result of the performed test for both wavelengths. A very clear

dependence of the laser power to the polarization plane was observed. Thus, a high

purity of polarization of the emitted laser beam can be expected. To retrieve the po-

larization purity of the laser for the different wavelengths, a sin2 function was fitted
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Emission window on roof of lidar

Emitted light

Power meter

Neutral-density filter

Rotatable

polarization filter

Figure 8.3: Apparatus for the determination of the polarization characteristics of the

emitted laser light. The apparatus was installed on the roof of the PollyXT .

to the determined curves. If one considers measurement errors of the power-meter of

the order of 0.5 mW, a polarization purity of the emitted light of better than 95%

is resulting from the measurements at both wavelengths. Most probably, the purity

is even better, but the high measurement errors at very low light power (when the

polarization plane of the apparatus is perpendicular to the laser polarization plane)

made it impossible to specify values better than 95%. However, a purity of 100% is

most probably not achieved as the calibration to cirrus clouds showed (cf. Sec. 5.2).

D NMMB/BSC-Dust

The dust load in Amazonia was analyzed by using data from NMMB/BSC-Dust (Pérez

et al., 2011; Haustein et al., 2011). NMMB/BSC-Dust is a new multi-scale online

dust model for regional and global simulations. The dust model is embedded into

the dynamical Non-hydrostatic Multiscale Model NMMB (Janjic, 2003; Janjic and

Black , 2006; Janjic et al., 2011). NMMB/BSC-Dust can be regarded as the follow-up

model of BSC-DREAM (Nickovic et al., 2001; Pérez et al., 2006) which is already well
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Figure 8.4: Results from the polarization test of the emitted laser light at 355 (blue) and

532 nm (green). The dependence of the laser power on the polarization plane is shown.

Shifts in phase between 355 and 532 nm are due to different positions of the apparatus

during the experiment.

established in the scientific community (e.g., Haustein et al., 2009). For the global

simulation used here, the horizontal and vertical resolution is 1◦×1.4◦ and 40 levels,

respectively.

NMMB/BSC-Dust takes into account the following processes (Pérez et al., 2011):

1. dust generation by surface wind and turbulence,

2. horizontal and vertical advection,

3. horizontal diffusion and vertical transport by turbulence and convection,

4. dry deposition and gravitational settling,

5. wet removal which includes in-cloud and below-cloud scavenging by convective

and stratiform clouds.

For the emission of dust, input data of surface wind speed, land-use type, vegetation

cover, source erodibility (topographic preferential sources after Ginoux et al., 2001),

aerodynamic surface roughness, soil texture, and soil moisture are required (Pérez
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et al., 2011). For dust transport, eight transport size bins with time-invariant, sub-bin

log-normal distribution are applied in the model (Zender et al., 2003). The model

covers a dust particle size range (radius) from 0.1–10 µm. The dust radiative feedback

can be interactively simulated. Wet deposition and precipitation-related mixing of

dust is computed separately for convective and stratiform precipitation. In addition,

below-cloud scavenging is taken into account.

All NMMB/BSC-Dust computations for this work were provided by the Barcelona

Supercomputing Center1. The global model NMMB was initialized with meteorologi-

cal fields of the NCEP/NCAR global reanalysis (2.5◦×2.5◦ resolution), updated every

24 hours and with 12 hours spin-up. Results are shown in Sec. 6.1.

1data kindly provided by Karsten Haustein, Barcelona Supercomputing Center, Spain

(Email: karsten.haustein@bsc.es)
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Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16, 64–75.

Ahlm, L., E. D. Nilsson, R. Krejci, E. M. Mårtensson, M. Vogt, and P. Artaxo (2009),
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and D. Rosenfeld (2006), The Bodélé depression: a single spot in the Sahara that

provides most of the mineral dust to the Amazon forest, Environmental Research

Letters, 1, 014005.

Koren, I., J. V. Martins, L. A. Remer, and H. Afargan (2008), Smoke invigoration

versus inhibition of clouds over the Amazon, Science, 321, 946–949, doi:10.1126/

science.1159185.



166 BIBLIOGRAPHY

Kotchenruther, R. A., and P. V. Hobbs (1998), Humidification factors of aerosols from

biomass burning in Brazil, Journal of Geophysical Research, 103, 32081–32090, doi:

10.1029/98JD00340.

Krejci, R., J. Ström, M. de Reus, P. Hoor, J. Williams, H. Fischer, and H. Hans-

son (2003), Evolution of aerosol properties over the rain forest in Surinam, South

America, observed from aircraft during the LBA-CLAIRE 98 experiment, Journal

of Geophysical Research, 108, 4561, doi:10.1029/2001JD001375.

Kuhn, U., L. Ganzeveld, A. Thielmann, T. Dindorf, G. Schebeske, M. Welling,

J. Sciare, G. Roberts, F. X. Meixner, J. Kesselmeier, J. Lelieveld, O. Kolle, P. Ci-

ccioli, J. Lloyd, J. Trentmann, P. Artaxo, and M. O. Andreae (2010), Impact of

Manaus City on the Amazon Green Ocean atmosphere: ozone production, precur-

sor sensitivity and aerosol load, Atmospheric Chemistry and Physics, 10, 9251–9282,

doi:10.5194/acp-10-9251-2010.

Kulmala, M., A. Asmi, H. K. Lappalainen, K. S. Carslaw, U. Pöschl, U. Baltensperger,
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170 BIBLIOGRAPHY

forestation and Climate, edited by J. Gash, C. Nobre, J. Roberts, and R. Victoria,

413–423, John Wiley, Chichester.

Nobre, C. A., M. A. Silva Dias, A. Culf, J. Polcher, J. H. C. Gash, J. Marengo, and

R. Avissar (2004), The Amazonian climate, in Vegetation, Water, Humans and the

Climate: A New Perspective on an Interactive System, edited by P. Kabat, pp.

79–92, Springer, Berlin.

Oke, T. (1973), City size and the urban heat island, Atmospheric Environment, 7,

769–779, doi:10.1016/0004-6981(73)90140-6.

Oliveira, A. P., and D. R. Fitzjarrald (1993), The Amazon river breeze and the lo-

cal boundary layer: I. Observations, Boundary-Layer Meteorology, 63, 141–162,

10.1007/BF00705380.

Oliveira, P. H. F., P. Artaxo, C. Pires, S. de Lucca, A. Procópio, B. Holben, J. Schafer,
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Pérez, C., K. Haustein, Z. Janjic, O. Jorba, N. Huneeus, J. M. Baldasano, T. Black,

S. Basart, S. Nickovic, R. L. Miller, J. P. Perlwitz, M. Schulz, and M. Thom-



BIBLIOGRAPHY 171

son (2011), Atmospheric dust modeling from meso to global scales with the on-

line NMMB/BSC-Dust model Part 1: Model description, annual simulations and

evaluation, Atmospheric Chemistry and Physics Discussions, 11, 17551–17620, doi:

10.5194/acpd-11-17551-2011.
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List of Abbreviations

ABLE The Amazon Boundary Layer Experiment

AERONET AErosol RObotic NETwork

agl above ground level

asl above sea level

AL Aerosol layer

AMAZE-08 AMAZonian aerosol characterization Experiment 2008

AMMA African Monsoon Multidisciplinary Analyses

AOD Aerosol Optical Depth

AVHRR Advanced Very High Resolution Radiometer

BASE-A & B Biomass Burning Airborne and Spaceborne Experiment -Amazonas & -Brazil

BBA Biomass Burning Aerosol

CATT-BRAMS Coupled Aerosol and Tracer Transport model to the

Brazilian developments on the Regional Atmospheric Modeling System

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CAM CAMera

CCL Cloud Convective Layer

CCN Cloud Condensation Nuclei

CLAIRE Cooperative LBA Airborne Regional Experiment

DABEX Dust And Biomass-burning Experiment

DAQ Data AcQuisition

DIAL DIfferential Absorption Lidar

EARLINET European Aerosol Research LIdar NETwork

EARLI09 EArlinet Reference Lidar Intercomparison 2009

ECMWF European Centre for Medium-Range Weather Forecasts

EUCAARI European Integrated Project on Aerosol, Cloud, Climate, Air Quality Interactions

EUSTACH EUropean Studies on Trace gases and Atmospheric CHemistry

INPE Brazilian National Institute for Space Research

(Instituto Nacional de Pesquisas Espaciais)

FIRMS Fire Information for Resource Management System

FMI Finish Meteorological Institute

FT Free Troposphere

HYSPLIT HYbrid Single Particle Lagrangian Integrated Trajectory Model

IN Ice Nuclei

IfT Leibniz Institute for Tropospheric Research

INPA National Institute for Amazonia Research

(Instituto Nacional de Pesquisas da Amazônia)

IPCC Intergovernmental Panel on Climate Change

ITCZ InterTropical Convergence Zone

LBA The Large-Scale Biosphere-Atmosphere Experiment in Amazonia
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MARTHA Multiwavelength Atmospheric Raman lidar

for Temperature, Humidity, and Aerosol profiling

ML Mixing Layer

MODIS Moderate Resolution Imaging Spectroradiometer

NOAA National Oceanic and Atmospheric Administration

Nd:YAG Neodymium-doped Yttrium Aluminum Garnet

NCEP National Centers for Environmental Prediction

NetCDF Network Common Data Form

PIXE Particle-Induced X-ray Emission

PM Particulate Matter

PMT Photo Multiplier Tube

Polly Portable lidar system

PSD Particle Size Distribution

RH Relative Humidity

RL Residual Layer

SAMUM Saharan Mineral Dust Experiment

SCAR-B Smoke, Clouds, And Radiation - Brazil

SMOCC Smoke, Aerosols, Clouds, Rainfall, and Climate

SSA Single Scattering Albedo

TRACE–A TRansport and Atmospheric Chemistry near the Equator – Atlantic

TWI Trade Wind Inversion

UTC Universal Time Coordinated

UV Ultra Violet

VIS VISible

VMD Volume Mean Diameter

XT eXTended
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