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1. Introduction

Marine shallow cumulus clouds in the trade wind region, hereafter called trade cumulus, are found in large

areas in the western parts of tropical oceans. These clouds form in large-scale enviroments characterized by

a warm and moist layer as well as steady winds within the lowest kilometers of the atmosphere and below

a temperature inversion, resulting from large-scale subsidence of dry, free-tropospheric air (Bony et al.,

2017). Compared to stratocumulus decks, trade-cumulus is observed in regions with higher sea surface

temperatures, a deeper boundary layer and smaller lower-tropospheric stability (Wood and Bretherton,

2006). The condensation and evaporation processes associated with the formation and dissipation of clouds

are determined by the turbulent exchange of heat and moisture from the sea surface as well as the free

troposphere (Bony et al., 2015). Due to the large albedo, trade cumulus strongly re�ects incoming solar ra-

diation, which cools the underlying atmosphere (Hartmann et al., 1992). Although the radiative processes

depend primarily on small spatial and temporal scales, trade-cumulus clouds substantially in�uence the

earth's radiative budget as well as large-scale dynamics due to the widespread dispersion in the tropical

oceans (Bony et al., 2017; Neggers et al., 2007).

The response of trade cumulus to a warming climate is critical for the estimation of global mean cloud

feedbacks (Bony et al., 2017). In global climate models, parametrizations have to be used to represent

small-scaled cloud-related processes. Unfortunately, not all processes can be quanti�ed yet. The clouds

respond more strongly to changes in the atmospheric environment in climate models than has been de-

termined by observations (Vial et al., 2017; Nuijens et al., 2015). Therefore, tropical low clouds have

been identi�ed as the main source of the uncertainty between the model estimatates of the global cloud

feedback (Bony and Dufresne, 2005). Even though observational approaches have improved our under-

standing of the tropical low cloud feedback in recent years and the sign of the feedback is very likely

positive, uncertainties about the strength of the feedback remain large. A better understanding of the

governing processes is still necessary. (Klein et al., 2017).

To improve the understanding of key processes of trade cumulus through observations, the Elucidating

the role of clouds-circulation coupling in climate (EUREC4A) �eld campaign was executed on 20-Jan-

2020 to 20-Feb-2020 in the downstream winter-trades of the North Atlantic, eastward and south-eastward

of Barbados. Its objective was to quantify the mass, energy and momentum balance in the subcloud

layer, cloud microphysics as well as the link to the large scale enviroment and other components of

the Earth system (Bony et al., 2017; Stevens et al., 2021). In-situ and remote sensing observations,

including the High-�ying aircraft (HALO), three low-�ying in-situ aircrafts, four reasearch vessels, long-

range observations of the Barbados Cloud Observatory as well as 2500 drop- and radiosonde were taken

to adress the questions. (Stevens et al., 2021).

The campaign dataset was also planned to serve as a reference point for satellite retrievals, which o�er a

di�erent perspective of clouds (Bony et al., 2017). These include the MSI on board the two polar-orbiting

Sentinel-2 satellites, which were developed to provide optical observations over global terrestrial surfaces

with a high spatial resolution up to 10m (Drusch et al., 2012). During the campaign, the Sentinel-2

MSI observation coverage was extended to the ocean region east of Barbados. This provides one month

high-resolution radiation data of tropical marine cloud scenes from this imager. So far, measurements

have only been performed over coastal oceans and were used for the determination of the concentrations

of water constituents (e.g. Pahlevan et al., 2017). In this work, atmospheric processes over marine surfaces

are derived from Sentinel-2 MSI observations for the �rst time.

Spatially high resolution analyses of marine trade cumulus have previously been performed with other
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satellite imagers, such as the imagers of various Landsat generations with horizontal resolutions between

80m and 15m as well as the Advanced Spaceborn Thermal Emission and Re�ection Radiometer (ASTER)

onboard the Terra satellite with a horizontal resolution up to 15m, and a revisit frequency of 16 days (e.g

Wielicki and Welch, 1986; Cahalan and Joseph, 1989; Berendes et al., 1992; Koren et al., 2008; Zhao

and Di Girolamo, 2007; Mieslinger et al., 2019). However, both Sentinel-2 satellites o�er a 290 km wide

observation path and thus the possibility of satellite based investigations from the micro-β to meso-β length

scale according to Orlanski (1975) with a comparatively high revisit frequency of 5 days at the equator

under the same viewing conditions. Therefore, the Sentinel-2 MSI observations of marine trade cumulus

will help to characterize the indiviudal macrophysical properties as well as the spatial organization.

The size of trade cumulus spans several meteorological length scales ranging from a few tens of meters to

several kilometers in diameter. While smaller clouds can be observed in very large numbers, the number of

larger clouds, on the other hand, is orders of magnitude lower. Several approaches (exponential, lognormal,

power law) exist to describe empirical cloud size data by mathematical functions (Neggers et al., 2003).

However, recent considerations commonly assume the size data follow a power law distribution (Mieslinger

et al., 2019). The knowledge of a mathematical description of the size distribution along with cloud fraction

as a variable for radiative �ux forms an important basis for parameterizations of convective mass �ux in

global climate models (Mieslinger et al., 2019; Neggers et al., 2003). Cloud size distributions based on

high-resolution satellite imagery showed that the small cumulus clouds provide the largest contribution to

the cloud fraction (Zhao and Di Girolamo, 2007) as well as to the total cloud re�ectance (Koren et al.,

2008). In addition, it was shown that the estimated cloud fraction depends on the spatial resolution of the

satellite sensor. The use of coarse resolution detectors generally leads to an overestimation of the cloud

fraction, since most pixels contain re�ectances of cloud and cloud-free region (Zhao and Di Girolamo,

2006; Koren et al., 2008). However, these publications only showed averaged values or analyzed a single

scene and did not cosidered more closely at whether di�erences in change of the cloud fraction at coarser

detector resolution between the cumulus scenes were apparent.

Observations of the Cloud base height (CBH) of trade cumulus are typically conducted using ground-

based remote sensing techniques, such as ceilometers or Light Detection and Ranging (LIDAR) (e.g.

Nuijens et al., 2014; Stevens et al., 2016). These techniques require an observation platform and provide

information on the temporal evolution of height at a point, but not on the spatial distribution. Likewise,

high-resolution satellite observations were used in only a few publications to characterize the spatial

distribution of cloud base heights (e.g. Berendes et al., 1992; Böhm et al., 2019). The combination of high-

resolution Sentinel-2 MSI observations and ground-based remote sensing measurements in the EUREC4A

campaign o�ers the opportunity to develop a CBH estimation method for Sentinel-2 data.

Characterisation of cloud properties such as cloud cover, CBH and cloud size using satellite remote

sensing requires a number of assumptions that allow the separation of cloudy areas from surface or at-

mospheric properties (Goodman and Henderson-Sellers, 1988). The method that seperates into clear and

cloudy areas depends on the goal of the cloud detection and on the characteristics of the sensor, since

there is no single retrievel algorithm capable of performing under all circumstances at all locations of

the earth (Rossow, 1989). Numerous experimental algorithms exist for the detection of cloud cover over

ocean surfaces using high resolution satellite sensors, which separate clouds from the dark ocean surface

by their di�erences in brightness in one (e.g. Wielicki and Welch, 1986; Zhao and Di Girolamo, 2007; Dey

et al., 2008; Koren et al., 2008) or more (e.g. Werner et al., 2016) spectral channels based on threshold

tests. On the other hand, for the detection of clouds at a single timestep with the Sentinel-2 MSI sensor,

some detection algorithms (e.g. Zhu et al., 2015) of other high-resolution satellite sensors were adapted
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in addition to the operational scene classi�cation of pixels Sen2Cor (Louis et al., 2016). The cloud mask

algorithm Function of mask (Fmask) (Zhu and Woodcock, 2012), originally developed for Landsat 7, has a

high detection accuracy, but was developed for the separation of clouds over a wide variety of surfaces and

is therefore relatively complex (Tarrio et al., 2020). This work will show, if the adaptation of a cloudmask

for marine low-level clouds from Werner et al. (2016) leads to a similiar performance even with a reduced

number of decision tests.

The main objective of the thesis is the characterization of macrophysical properties of trade cumulus

in terms of cloud fraction, shadow fraction, CBH and cloud size distribution based on high resolution

Sentinel-2 MSI observations. For this purpose, the properties will be determined for 9 110x110 km2 sized

satellite scenes of small to medium trade cumulus and the di�erences between the scenes will be presented.

In addition, the dependence of cloud properties on the spatial resolution of the satellite sensor will be

investigated. As a basis, a cloud detection algorithm developed by Werner et al. (2016) for retrievals of

low clouds with ASTER will be adapted to the Sentinel-2 data sets and the accuracy compared to other

cloud masks will be evaluated. For CBH estimation, an algorithm following the method of Berendes et al.

(1992) based on the geometric match between cloud and cloud shadow will be developed and compared

with ship-based ceilometer measurements. The method also requires the successful detection of cloud

shadows from the ocean surface. Therefore, a shadow detection algorithm by Amin et al. (2012) based on

the Cloud shadow detection index (CSDI) will be adapted to the Sentinel-2 data sets.

The thesis is structured as follows: In section 2 mathematical de�nitions of the size variables are made.

Section 3 introduces the Sentinel-2 MSI sensor and the dataset. The methods for detecting cloud and

shadow areas as well as estimating cloud base height are presented and evaluated in section 4. Finally,

the methods are applied to 9 trade cumulus scenes in section 5 and these are discussed in terms of cloud

fraction, shadow fraction, cloud height, thier cloud size distribution, and the in�uence of detector resolution

on the determination of these cloud properties.
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2. De�nitions

Remote sensing of clouds using passive satellite methods is based on the detection of spectral radiances by

the satellites instrument. The radiances are directed upward at the Top of atmosphere (TOA) as a result

of emission and scattering of electromagnetic radiation by the atmosphere and the underlying surface. The

derived properties should therefore be understood as quantities integrated over the entire path (Stephens

and Kummerow, 2007). In the visible to shortwave-infrared wavelengths, the detected radiance results

mostly from the re�ection of incident solar radiation. Therefore, spectral TOA re�ectances are used in the

analysis, which characterize the ratio of the detected to the incident solar radiance. A technical de�nition

of the Sentinel-2 MSI re�ectance is performed in section 3.1.

In the context of this work, cloud size, cloud equivalent diameter, cloud fraction, and frequency distri-

butions of cloud size and cloud fraction are derived from Sentinel-2 MSI re�ectances. The size variables

and their mathematical relationships are presented below.

2.1. Cloud fraction and cloud equivalent diameter

Cloud objects are considered as contiguous areas of pixels identi�ed as cloudy by the scene classi�cation

(see chapter 4.1.1). The cloud area A is therefore calculated from the summation of all 10x10m2 pixels

of a cloud object and corresponds to the thickness-dependent projection area of the cumulus cloud along

the observation vector onto the Earth's surface (Neggers et al., 2003). In addition to the area of a cloud,

the cloud equivalent diameter D as a typical length scale measure is calculated from the cloud area by

assuming a circular cloud:

D =

√
4 ·A
π

. (1)

The cloud fraction F is de�ned as the ratio of the total projected area of all cloud objects to the area

Ascene of the considered cloud scene. The proportion of clouds of one diameter to the total cloud fraction

F (D) can therefore be calculated from the total number of clouds of one diameter N(D) by

F (D) =
N(D) · π ·D2

4 ·Ascene
. (2)

2.2. Cloud size distributions

For the description of trade wind cumulus, it is important to �nd a functional relation for cloud size

density, de�ned as the probability density function of the number of clouds with a size variable such as

cloud equivalent diameter D (Neggers et al., 2003). The total number of clouds N can be derived from

the integral of the cloud size density N(D) over all cloud equivalent diameters dD

N =

∫ ∞

0
N(D)dD (3)

and is a conserved quantity independent from the chosen size variable. Since both the number and size of

trade cumulus span several orders of magnitude, but the majority of clouds are found in small cloud sizes,

several approaches exist to describe empirical cloud size data by mathematical functions. Plank (1969) and

Wielicki and Welch (1986) described N(D) with an exponential function, for example. However, in the

latest publications of observed size distributions, a power function is used to describe N(D) (e.g. Cahalan

and Joseph, 1989; Neggers et al., 2003; Zhao and Di Girolamo, 2007; Koren et al., 2008; Mieslinger et al.,

2019):
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N(D) = a ·Db. (4)

The exponent of the power function b is called the scaling parameter and is typically in the range -3

≤ b ≤ -2 for natural phenomena (Mieslinger et al., 2019). For a su�ciently large number of sampled

cloud objects, this can be derived by minimizing the squared residuals in a linear regression from a log-log

histogram of the cloud size distribution. The mean sizes of the histrogram bins are used as reference

points. The scaling parameter b results from the slope of the linear regression:

log(N(D)) = constant+ b · log(D). (5)

The derivation of a functional description by a linear least squares �t can lead to strong deviation in the

determined scaling parameters when using too small data sets, because the size classes are incompletely

occupied for the large cloud sizes (Clauset et al., 2009). Therefore, to increase the number of cloud objects

in the upper size classes, size distributions using exponentially increasing histogram bins (logarithmic

binning) are also determined according to Mieslinger et al. (2019). The power functions approximated

to the cloud size distributions with logarithmic binning N(log(D)) are mathematically related to the size

distributions with equidistant binning N(D) in the following way:

N(log(D)) = N(D) · dD

dlogD
= N(D) ·D · ln(10) = a · ln(10) ·Db+1 (6)

Some previous publications derived cloud size distribution using the projected area A as the size variable

and the logarithmic binning scheme (Koren et al., 2008). The approximated power function to the cloud

size distribution N(log(A)) can be calculated from the size distributions of the equivalent diameter N(D)

as follows:

N(log(A)) = N(D) · dD

dlog(A)
= N(D) ·

π
4 ·D2 · ln(10) · 2

π ·D
= a · 1

2
ln(10) ·Db+1 = a′ ·A

b+1
2 (7)

The exponents of the power functions using di�erent binning methods can thus be compared via:

b(N(D)) ∝ b(log(D))− 1 (8)

and

b(N(D)) ∝ 2 · b(N(log(A))− 1. (9)

2.3. Cloud fraction distributions

This work will also focus on the contribution of clouds with an equivalent diameter D to the total cloud

fraction F of the scene. For this purpose, the slope of the cloud fraction contribution dF
dD is computed

from equation 2, which turns to be

dF

dD
=

π

4
· a · (b+ 2) ·Db+2. (10)

Consequently, the probability density function of the cloud fraction contribution shows a monotonically

increasing behavior for a scaling parameter b ≥ −2 and a monotonically decreasing behavior for b ≤ −2.

A monotonically increasing behavior would correspond to a larger contribution of large clouds to the total

cloud fraction, a monotonically decreasing behavior to a larger contribution of smaller clouds to the total
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cloud fraction. However, it must be noted that this calculation is made under the assumption that the

cloud areas within a bin are also continuously distributed like the cloud equivalent diameters and the

distribution can be described with a power law (Zhao and Di Girolamo, 2007). Due to the �nite resolution

and irregular geometry of the cloud objects, the assumption might be violated in some bins.
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3. Dataset

3.1. Sentinel-2 MSI sensor

The Sentinel-2 MSI is a high-resolution sensor with 13 spectral bands aboard Sentinel-2A and Sentinel-

2B, two sun-synchronus satellites at 786 km altitude. The satellites were launched in 2015 and 2017,

respectively, by the European Space Agency (ESA) as part of the Global Monitoring for Enviroment and

Security (GMES) program (Szantoi and Strobl, 2019). The mission provides continuity to services relying

multi-spetral high-resolution optical observations over global terrestrial surfaces (Drusch et al., 2012).

Band
λcentral

(nm)

∆λ

(nm)

Resolution

(m)

Lref

(W·m2 ·sr−1·µm−1)

Band parralax

(°)

Temporal o�set

(s)

1 443 20 60 129 3.14 2.31

2 492 66 10 128 1.26 -

3 560 36 10 128 1.70 0.53

4 665 31 10 108 1.93 1.01

5 704 15 20 74.5 2.18 1.27

6 740 15 20 68 2.40 1.53

7 783 20 20 67 2.62 1.79

8 833 106 10 103 1.50 0.26

8a 865 21 20 52.5 2.92 2.05

9 945 20 60 9 3.18 2.59

10 1375 31 60 6 1.76 0.85

11 1610 90 20 4 2.30 1.47

12 2190 180 20 1.5 2.86 2.09

Table 1: Sentinel-2 MSI spectral band characteristics: central wavelength λcentral, bandwidth at full width

half maximum ∆λ, spatial resolution, reference radiance level Lref , along-track parallax angle

between odd and even detectors and temporal o�set in relation to Band 2 (Drusch et al., 2012;

Fletcher, 2012). The bands used in the analysis are marked in bold.

Both identical satellites are maintained in the same orbit with a phase delay of 180 degree and overpass

the equator in a 10.30 am descending node (14 and 3/10 revolutions per day), to make a compromise

between minimizing cloud cover and ensuring suitable sun illumination (Drusch et al., 2012). The Sentinel-

2 mission provides systematic observations of land areas, islands larger than 100 km2 as well as coastal

and inland waters between 56°S and 84°N (Gascon et al., 2017). Within the framework of calibration sites

or measurement campaigns, observations can also be requested in other areas, such as the area of the

southern Sargasso sea east and south-east of Barbados (Gascon et al., 2017).

Table 1 shows an overview of the properties and resolutions of the 13 MSI spectral bands. Bands 1-4 are

in the Visible (VIS), bands 5-9 bands are in the Near-infrared (NIR), and bands 10-12 are in the Shortwave

infrared (SWIR) spectral range. Band 2 in the red, band 3 in the green, band 4 in the blue as well as band

8 in the NIR spectral range operate with a resolution of 10m, the wider bands 11 and 12 in the SWIR as

well as 5 further narrow bands in the Visible and near-infrared (VNIR) spectral range with a resolution

of 20m. Three additional bands provide observations with a resolution of 60m in the edge of water-vapor

absorption lines, mainly for the detection of cirrus clouds and the atmospheric correction (Gascon et al.,

2017). However, Sentinel-2 MSI does not include a band in the thermal infrared, which is important for
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cloud-detection and cloud-top-height estimation, since the emission of radiation is temperature dependent

and optical thick cumulus stand out with lower values of the brightness temperature compared with the

relatively warm ocean surface (Zhu et al., 2015).

The 12 detectors on the two focal planes of the VNIR and SWIR bands are employed in a stagged

con�guration, which covers a 20,6° �eld of view and enabels a large swath width of 295 km (Drusch et al.,

2012). The large �eld of view at both satellites allow a high revisit frequency of 5 days at the equator

under the same viewing conditions. In comparison, the Terra ASTER observes in a more narrow �eld of

view of 60 km, which leads to a larger revisit frequency of 16 days (Werner et al., 2016).

T21PTM T21PUM T21PVM

59.5°W 59°W 58.5°W 58°W 57.5°W 57°W
9.9°N

10.05°N

10.2°N

10.35°N

10.5°N

10.65°N

10.8°N
(a) Sentinel-2 mean view zenith angle [°]
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Figure 1: Satellite observation angles (a) θsat and (b) ϕsat in a cross section of the observation path on

31-Jan-2020. The angles were averaged from all bands involved in the CBH estimation (Bands

2, 3, 4, 8 and 12). The black lines indicate the size and location of the data tiles T21PTM,

T21PUM and T21PVM

The arrangement of the detectors leads to di�erences in the observation geometry. Figure 1 shows the

zenith and azimuth angles of observation averaged over the 5 bands used in this analysis for a cross-

section of the observation path on 31-Jan-2020. Each detector covers a 25.9 km wide observation area,

overlapping with the neighboring detector by 1.9 km (Gascon et al., 2017). As a consequence of the two-

row stagged arrangement, the azimuth angle of the observation di�ers between odd and even detectors.

The variability in the viewing angle lead to di�erent radiometric properties of e.g. the ocean surface, due

to the individual angular relationship between the observation angle and the solar angle (Gascon et al.,

2017). The arrangement of the bands on the detectors also di�ers as a consequence of the mirror concept
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(Gascon et al., 2017). As the recording of single bands is done with a push-broom concept, a time shift

in the observation of an area with two di�erent bands results by up to 2.31 s. Since the satellite itself

has moved during this time, this leads to di�erent observation angles between two bands in the same

detector �eld of view (Gascon et al., 2017; Frantz et al., 2018). While this parallax between two bands

can be accounted with a geometric correction for stationary objects, the displacement is still visible for

non-stationary objects with an unkown altitude (e.g. clouds) (Frantz et al., 2018).

The spectral, equalized digital counts of the raw image dλ(i, j) are converted for each pixel i, j into the

TOA spectral re�ectances Rλ(i, j) by

Rλ(i, j) =
π · dλ(i, j) · r2SE

Ak · F0(λ) · cos θ0(i, j)
(11)

using the sun-earth-distance r2SE , an absolute calibration coe�cient Ak of the instrument, the incoming

spectral solar irradiance F0(λ) and the solar zenith angle θs(i, j). The conversion is part of a 5-step

processing of the compressed raw data into the published geolocated TOA dataset with sub-pixel multi-

spectral and multi-date registration in Level 1C (Drusch et al., 2012). During processing, a radiative

correction is applied to the computed re�ectances that removes dark and blind pixels, interpolates defective

pixels, and performs a pixel response non-uniformity correction. In addition, a linear correction is applied

to the SWIR pixels to reduce electronic cross-talk e�ects (Gascon et al., 2017). In the last step, a geometric

re�ning is applied to increase the accuracy in the geolocation and the re�ectances are transformed to

a cartographic UTM/WGS84 projection. The datasets are provided as tiles of 110x110 km2 size each,

overlapping with the neighboring tile by 5 km in all directions.

3.2. Description of the Sentinel-2 dataset

For the selection of the analyzed scenes, Red-green-blue image (RGB) quicklooks of the observations in a

range of 10°- 20°N and 50°- 60°W were �rst created for the period between 20-Jan-2020 and 20-Feb-2020

and sorted according to the presence of trade cumulus and the absence of major clusters or multilayer

cloud cover. The Level 1C TOA datasets of the selected over�ights were downloaded via the Copernicus

Open Data API Hub1. For the high resolution datasets RGB images of the individual scenes were created

and examined for the absence of thin cirrus cloud cover again.

For the determination of property averages, but also to highlight di�erences in the characteristics between

trade-cumulus scenes, 9 tiles with a size of 110x110 km2 were selected from all datasets. The tiles are

located in three cross-sections of the observation path on 31-Jan-2020, 02-Feb-2020, and 05-Feb-2020 and

were selected based on the presence of shallow to moderate trade cumulus throughout the cross-section.

For these tiles, the Bottom of atmosphere (BOA) datasets from Level 2A were also downloaded, which

include atmospherically corrected re�ectances as well as a scene classi�cation generated with the Sen2Cor

processor (Richter et al., 2011). Table 2 shows the position and properties of the sensor and solar geometry

for the selected scenes.

3.3. Shipbased Ceilometer data

Within the scope of the thesis, the CBH over ocean surfaces will be derived from Sentinel-2 observations.

For validation, a comparison with CBH measurements from 2 Jenoptik CHM15k ceilometers on board the

research vessels Meteor and L'Atalante will be performed. Ceilometers are active remote sensing devices

1The Copernicus Sentinel-2 data of the year 2020 used in this thesis is avaivable at https://scihub.copernicus.eu/

apihub/odata/v1/

https://scihub.copernicus.eu/apihub/odata/v1/
https://scihub.copernicus.eu/apihub/odata/v1/
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Date Tile
Latitude[°N]

Longitude[°W]

viewing zenith [°]

viewing azimuth [°]

sun zenith [°]

sun azimuth [°]

2020-01-31 T21PTM
9.85 - 10.85

57.81 - 58.83

1.6 - 11.8

88.0 - 124.0

36.6 - 38.0

137.0 - 138.9

2020-01-31 T21PUM
9.86 - 10.85

58.73 - 59.74

1.0 - 5.6

-163.1 - -128.8

36.0 - 37.4

138.1 - 139.9

2020-01-31 T21PVM
9.86 - 10.86

56.91 - 57.91

3.0 - 11.9

-90.6 - -58.5

35.5 - 36.8

139.1 - 141.1

2020-02-02 T21QYU
16.17 - 17.18

54.08 - 55.13

0.8 - 7.2

-164.4 - 132.2

40.1 - 41.5

143.3 - 145.0

2020-02-02 T21QZU
16.15 - 17.17

53.14 - 54.19

1.4 - 11.3

-130.7 - -55.5

35.9 - 37.3

138.8 - 140.7

2020-02-05 T21PTP
11.66 - 12.66

58.74 - 59.77

6.1 - 11.8

95.2 - 112.1

37.1 - 38.4

136.7 - 138.5

2020-02-05 T21PUP
11.67 - 12.66

57.82 - 58.84

0.8 - 8.7

-164.2 - 131.8

36.5 - 37.9

137.7 - 139.6

2020-02-05 T21PVP
11.67 - 12.66

56.91 - 57.92

0.8 - 9.9

-164.2 - 59.0

35.9 - 37.3

138.8 - 140.7

2020-02-05 T21PWP
11.67 - 12.66

55.99 - 57.00

7.2 - 11.9

84.2 - -69.6

35.4 - 36.7

134.2 - 136.2

Table 2: Overview of the position and satellite and solar geometry of the data tiles used in the analysis.

that operate on the LIDAR principle. A vertically emitted laser pulse is scattered by particles in the

atmosphere and a backscatter pro�le is generated from the power scattered to the receiver (Emeis et al.,

2004). The height of the �rst 3 cloud bases are derived from strong inhomogeneities in the backscatter

pro�le with a range resolution of 5m and the uncertainty of the height derivation is given as ± 5m

(Heinemann, 2015). The �rst base height will be used as CBH.

Despite the numerous research vessels that provided ground-based remote sensing data in the observation

area as part of the EUREC4A campaign, only two scenes on 10-Feb-2020 with a good overlap between

the observation path and vessel measurements and the presence of small to medium-sized trade cumulus

could be selected for the evaluation. Therefore, in addition to the characterization, the Sentinel-2 datasets

in tile T21PVR (13.48 - 14.47°N, 56.90 - 57.92°W) and tile T21PTM (9.85 - 10.85°N, 57.81 - 58.83°W)

on 10-Feb-2020 were used for the evaluation. The associated ceilometer data sets were obtained from the

EUREC4A AERIS data server 2.

2https://observations.ipsl.fr/aeris/eurec4a/,25-Feb-2020

https://observations.ipsl.fr/aeris/eurec4a/
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4. Methods

4.1. Adaptation of a cloud mask

The analysis of the radiative properties of clouds requires classi�cation of image pixels into those in

which the radiative �ux detected by the satellite sensor originates exclusively from optically thick clouds,

exclusively from the cloud-free surface, and those in which both the surface and clouds contribute to the

radiative �ux. Therefore, an algorithm for classifying pixels into con�dently cloudy, probably cloudy,

probably clear, and con�dently clear cloud classes is presented below by Werner et al. (2016) and adapted

to the Sentinel-2 MSI sensor.

4.1.1. Theoretical background of cloud detection algorithms

Algorithms to retieve clouds from satellite images can be divided into �xed threshold tests, statistical

methods based on brightness distributions of multiple bands or spatial coherence, and radiative transfer

methods from which cloud optical thickness is directly derived (Goodman and Henderson-Sellers, 1988).

In this work, cloudy regions are detected using �xed threshold test, but also via the ratio of re�ectances

in two spectral regions, the ratio tests. The adjustment of the threshold values is done via the analysis of

distinct clusters in frequency distributions of the re�ectances of a scene.

Fixed detection thresholds are determined for observables - such as the bidirectional re�ectance - on

which cloudy and clear pixels show a strong contrast to each other (Rossow, 1989). The contrast can be

chosen in spatial as well as in temporal dimension and the assignment of pixel properties is often done by

using a �xed decision tree that includes tests in multiple spectral regions. Since the MSI images on both

Sentinel-2 satellites are characterized by a broad observational swath and a high revisit frequency, both

single-scene and multi-temporal algorithms have been developed.

The operational processing of TOA re�ectances stored in Level-1C to BOA re�ectances in Level-2A

includes a scene classi�cation (Sen2Cor) step, that assigns pixels to three di�erent cloud classes and a

cloud shadow class, respectively. It is based on single band thresholds as well as ratio tests (Richter et al.,

2011). Some tests are also based on di�erences in the re�ectance of two bands. In addition, two threshold

values are de�ned for each re�ectance tests and the cloud probability changes linearly from 0 to 1 between

both thresholds (Richter et al., 2011). The scene classi�cation is operationally provided at a resolution of

20m as part of the Level-2A dataset.

Another mature scene classi�cation algorithm is the Function of mask (Fmask), a single-date, object

based method for cloud and cloud shadow detection in Landsat 4-7 data (Zhu and Woodcock, 2012). It

was adopted by Zhu et al. (2015) to Sentinel-2 data. The detection algorithm considers both a �xed

threshold decision tree based on cloud physical propertis and a cloud probability layer based on the spatial

variability of re�ectances in a variety of steps. A prediction of the potential location of the cloud shadow

is used to link detected shadow pixels to the cloud object. Frantz et al. (2018) improved the separation

of low clouds using the displacement of elevated objects as a consequence of the viewing angle parallax.

In contrast to the other cloud detection algorithms, the Fmask produces only one cloud and cloud shadow

category at a horizontal resolution of 20m.

Examples of multi-temporal cloud masks include the MACCS-ATCOR3 Joint Algorithm (MAJA) of

Hagolle et al. (2017) in which clouds are detected based on their spectral di�erences from the last cloud-

free composite image and the Multi-temporal mask (Tmask) of Zhu and Woodcock (2014), which compares

3MACCS, the Multi-sensor Atmospheric Correction and Cloud screening algorithm Center d'Etudes Spatiales de la Biosphere

(CESBIO) and ATCOR, the Atmospheric and Topographic Correction software from German Aerospace Center (DLR)
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all pixels classi�ed as cloud-free to a modeled ground re�ectance based on cloud detection by the Fmask

and identi�es deviations as cloud or cloud shadow. Since the campaign period was limited to one month,

only a few overlaps of the satellite path are available for each observation point. Furthermore, the radiative

properties of the ocean surface di�er due to the presence of sun glint in some scenes. As a consequence,

only single-scene cloud masks are considered below.

The presented cloud detection algorithms were developed to successfully perform scene classi�cation

over numerous surface types with di�erent re�ectance properties. However, a globally performing detection

algorithm is not necessary at this time, since the treatment of clouds in this work is limited exclusively to

selected cumulus scenes over ocean surfaces. For this type of scenes, the variability of background radiative

properties is small, and depends on the ocean wave slope distribution, Aerosol optical depth (AOD), and

how the viewing angle is aligned to the scattering angle of the incident solar radiation (Mieslinger et al.,

2021). Therefore, a cloud detection algorithm introduced by Werner et al. (2016) is described below. It

was developed to study e�ects of sensor resolution on remote sensing products of marine boundary layer

clouds using Terra-ASTER re�ectance datasets.

4.1.2. Description of the algorithm

The algorithm uses a hybrid approach based on a four-test decision tree with �xed thresholds and requires

a selection of scenes with presence of low-level water clouds and the absence of high-level cirrus clouds.

According to the Moderate Resolution Imaging Spectrometer (MODIS) cloud masking scheme introduced

by Platnick et al. (2003) pixels will be classi�ed as con�dently cloudy, probably cloudy, probably clear

or con�dently clear. A binary decision between clear and cloudy pixels classi�es con�dently cloudy and

probably cloudy pixels as a cloud, con�dently clear and probably clear pixels as clear areas, respectively.

The four decision tests and the decision tree of the cloudmask is shown in Figure 2:

i) Near-infrared (NIR) re�ectances R0.83 (band 8) have to exceed a threshold of 0.065 to become �agged

as con�dently cloudy. R0.83 < 0.03 are decided as con�dently clear.

ii) Pixels with Short-wave-infrared (SWIR) band 12 re�ectances R2.19 > 0.02 are kept as con�dently

cloudy, with R2.19 > 0.015 as probably cloudy and with R2.19 > 0.01 as probably clear. This decision

seperates the absorbing ocean surface from bright clouds.

iii) A band 8 and band 4 re�ectance ratio r1 = R0.83
R0.66

tests the constant spectral behavior of clouds in

the visible and NIR range. Therefore, pixels with 0.80 < r1 < 1.75 keep the con�dently cloudy �ag,

r1 < 0.70 leads to a con�dently clear �ag.

iv) Another band 3 and band 4 re�ectance ratio r2 = R0.56
R0.66

is based on a strong decrease in Rayleigh

scattering with increasing wavelength to distinguish thin cumulus clouds from ocean surface. Pixels

r2 < 1.20 keep thier classi�cation as con�dently cloudy, r2 < 1.35 as probably cloudy and r2 < 1.45

as probably clear.

Adapting the detection algorithm to Sentinel-2 observations can be done, because the central wavelengths

and bandwidths of the bands used in the ASTER sensor di�er only slightly from the spectral ranges in

the Sentinel-2 MSI. However, even small changes in the spectral response function used may require

adjustments to the limits, as discussed in the following section. In addition, the original cloud mask

includes a �fth test based on radiances in the thermal infrared, which is applied to correct false cloudy

pixels under strong sun glint or due to increased horizontal photon transport. Since the Sentinel-2 MSI



4 METHODS 13

Figure 2: Outline of the cloud detection algorithm by Werner et al. (2016). It illustrates the decision tree

including the four cloudiness tests based on the re�ectances R0.83 = R0.86,A and R2.19 = R2.1,A

as well as the ratios r1 and r2. Note that the ASTER band wavelengths RA slighty di�er to the

Sentinel-2 wavelengths shown in the description.

does not include a thermal channel, this step is not performed and a selection of scenes by the absence of

strong sunglint is necessary.

4.1.3. Threshold adjustment

As it is shown in Yang and Di Girolamo (2008), thresholds for distinguishing between clear and cloudy

pixels can be derived from the Probability density function (PDF) of the observed quantities. In an ideal

situation, a gap between a maximum of clear pixels and a maximum of cloudy pixels would de�ne the

threshold. However, overlapping frequency distributions are observed as a result of di�erent optical cloud

thickness, 3D radiation e�ects in broken cloud �elds with di�erent cloud top heights, as well as due to

di�erent ground re�ectances (Wielicki and Welch, 1986; Koren and Joseph, 2000). Clear pixels brightened

by scattering can therefore have higher re�ectances than shaded or optical thin cloud edge pixels. Since

the selection of a perfect threshold is no longer possible due to this overlap in the PDFs, the objective

of the analysis must be considered to improve the accuracy of the threshold-based detection. Werner

et al. (2016) targeted a cloud-conservative selection in order to subsequently develop successful retrievals

of cloud properties. A cloud-conservative detection algorithm sets the thresholds, to avoid that clear pixels

are misclassi�ed as cloudy. In contrast, some clear-conservative detection algorithms are also included in

the analysis, which set the thresholds, to avoid that cloudy pixels are misclassi�ed as clear (Yang and

Di Girolamo, 2008). Since the objective is to derive cloud fraction and cloud base height from the detected

cloudy pixels, the adjustment of the thresholds based on visual inspection aims at reducing errors in the

determination of the cloud fraction, but also avoid misclassi�cation of clear pixels as cloudy.
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Figure 3: Probability density functions (PDF) of the Werner et al. (2016) cloud detection threshold quan-

tities in 2x2km2 single-cloud subsets (thin lines) and PDF of all subsets (thick line). The vertical

lines visualize the original (thin) and adjustet (thick) thresholds.
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con�dently cloudy probably cloudy

Thresholds original adjusted original adjusted

R2.16 0.02 0.02 0.15 0.15

R0.83 0.065 0.065 0.030 0.040

ratio r1 0.80 - 1.70 0.85 - 1.70 0.75 - 0.8 0.8 - 0.85

ratio r2 < 1.20 < 1.15 < 1.35 < 1.25

Table 3: Selected thresholds used in the four-step decision tree to classify a pixel as con�dently cloudy

respectively probably cloudy. Comparison between original thresholds in Werner et al. (2016)

and adjusted thresholds in this work.

Figure 3(a) and (b) show the PDF of the SWIR and the NIR re�ectance of 9 manually chosen scene

subsets with a size of 2x2 km2. All subsets contain at minimum one shallow cumulus cloud. The cloud

shadow area and the sourrounding clear ocean surface are displayed in Figure 13 in the appendix of this

thesis. The histrograms show a continuous PDF with at least one broader maximum. While in 5 scenes

this maximum can be observed in the range 0.15 ≤ R2.19 ≤ 0.2 and 0.25 ≤ R0.83 ≤ 0.3, respectively, two

scenes from 31-Jan-2020 and two scenes from 05-Feb-2020 indicate a broader maximum in the range R2.19

> 0.2 respectively R0.83 > 0.35. The re�ectance value of the clear ocean surface can be derived from these

maxima, whereas the value is higher in the latter scenes due to the stronger re�ection of the incident solar

radiation in the viewing direction. Most scenes show a further, narrow maximum in each case immediately

above the smallest re�ectance value. This results from the contribution of the shaded surface pixels to the

frequency distribution. The re�ectance of the cloud shadows in two scenes on 31-Jan-2020 is thus in the

re�ectance range of the sunlit ocean surface in 5 scenes.

As a consequence of the di�erent background re�ectances, the PDF calculated from all scenes has several

local maxima, which makes it di�cult to select a global threshold from the re�ectances. Therefore, in

some previous analyses of high-resolution satellite imagery, the thresholds were determined manually for

individual scenes (Zhao and Di Girolamo, 2007; Koren et al., 2008). Since this is time-consuming for larger

statistics and, in addition, the Sentinel-2 MSI sensor geometry results in di�erent surface re�ectances in

one dataset, a scene-dependent threshold selection is not applied in this work. Only the limit for probably

cloudy pixels in band 8 has been increased to a threshold of 0.4 to avoid misclassi�cation of the ocean

surface as probably cloudy in some scenes.

In contrast to the single-band re�ectances, the PDFs of the re�ectance ratios r1 = R0.83
R0.66

and r2 = R0.56
R0.66

indicate similar progression with two distinct maxima for all scenes. This is mainly due to the strong

decrease of rayleigh scattering and increase of absorption of water bodies with increasing wavelength in

the VNIR range. Therefore, clear oceans pixels show values of 0.55-0.75 for r1, and values of 1.25-1.6 for r2,

while the homogenous scattering of cloud droplets in all VNIR wavelenghts leads to values around 1 for both

ratios. Based on the distributions, a slight adjustment of the thresholds of both ratios in the direction of

the frequency maximum of the cloudy pixels was possible. This should reduce the misclassi�cation between

bright surface pixels and dark cloud pixels even without a further test in the terrestrial wavelength range.

The adjusted thresholds in comparison with the original cloud detection thresholds are displayed in table

3.
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4.2. Shadow detection algorithm

The calculation of cloud height based on the geometric relationship between cloud, cloud shadow and the

satellite detector requires the successful di�erentiation of ground pixels into shaded and those that are

not shaded by a cloud. Since the operational Sen2Cor processor is not able to detect cloud shadows over

water bodies and classi�es shadows as water pixels, a shadow detection algorithm must be adapted for the

characteristics of the Sentinel-2 MSI sensor (Richter et al., 2011).

4.2.1. Description of the cloud shadow detection index (CSDI)

There have been few publications on the identi�cation of cloud shadows over water surfaces in medium- to

high-resolution satellite imagery. The MODIS cloud detection algorithm includes a cloud shadow test for

clear pixels based on two re�ectance thresholds and a re�ectance ratio test in the VNIR wavelength range

(Ackermann et al., 2006). The Fmask algorithm determines potential cloud shadow layers over various

surfaces using the intensity di�erences between shaded and surrounding sunlit areas in a single NIR band

(Zhu and Woodcock, 2012). A similar approach was taken by Amin et al. (2012) for satellite imagery from

the Hyperspectral Imager for the coastal ocean (HICO) aboard the International Space Station (ISS).

Re�ectances from numerous channels in the blue-green region of the visible spectrum were ampli�ed by

integration over all wavelengths and shadows were subsequently separated using a contrast threshold.

Since re�ectances for shaded pixels over water surfaces di�er between scenes depending on atmospheric

conditions and observation geometry, the cloud shadow detection based on a �xed re�ectance threshold

is not possible. In addition, shadow detection was developed by Amin et al. (2012) speci�cally for fast

and direct identi�cation of cloud shadows over water surfaces. Therefore, this algorithm is used in the

following.

In contrast to the HICO, only 3 high-resolution spectral bands are in the wavelength range between

450 nm and 670 nm. Thus, for the ampli�cation of the contrast between shaded and adjacent sunlit

regions, it is not possible to determine an integrated brightness value over all wavelengths, but only a

mean re�ectance value (MV):

MV =
1

3
· (R0.49 +R0.56 +R0.65) (12)

with the re�ectance values R0.49 of band 2, R0.56 of band 3 and R0.65 of band 4. To separate shaded

pixels by using a constant threshold, the MV of a pixel MVi is normalized by the spatial mean of the MV

of all clear pixels within a Spatial adaptive sliding box (ASB), called the cloud shadow detection index

(CSDI):

CSDI =
MVi

MVASB

(13)

The calculation of the spatial mean MVASB requires the removal of all pixels identi�ed as probably

cloudy or con�dently cloudy by the cloud mask. Since the ASB should contain both shaded and sunlit

pixels or only sunlit pixels, a size of 5x5 km2 (500x500 pixels at 10m resolution) was chosen. Therefore,

shadows are not detected within 2.5 km from the edges of the data sets.

4.2.2. De�nition of a CSDI threshold

Figure 4(a) shows the PDF of the calculated CSDI for all subsets. For the majority of pixels in the subsets,

a CSDI value between 0.95 and 1.1 was calculated. Another, smaller frequency maximum is shown by
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Figure 4: (a) PDFs of calculated cloud shadow detection index (CSDI) in 2x2km2 single-cloud subsets

(thin lines) and PDF of all subsets (thick line), (b) Example subset (02-Feb-2020, tile T21QZU)

with calculated CSDI and scene classi�cation.

almost all scenes at 0.7 ≤ CSDI ≤ 0.85. The location of the second, shadow induced maximum depends on

the proportion of shaded pixels and the contrast between pure di�use and re�ected plus di�use radiation.

Contrary to the original idea of contrast-based detection, not all sunlit areas show a CSDI ≥ 1. This may

be caused by two reasons: First, as can be seen in the Figure 4(b) example, the ocean wave slopes leads to

inhomogeneous re�ectance properties of the sunlit ocean surface, violating the condition of homogeneous

surface properties within the ASB. The heterogenity is not preventable for detector resolutions that are

�ner than the mean wavelength of the ocean waves. Second, not all cloudy pixels at the edge of detected

clouds are included in the cloud mask, and thus large re�ectance values are included in the calculation

of the mean re�ectance of clear pixels. A bu�er around detected cloud objects for shadow analysis could

prevent this misinterpretation.

To avoid false detection of sunlit ocean pixels as shaded, a �xed CSDI threshold as in the original

shadow detection algorithm does not lead to a successful shadow detection in all scenes. The threshold for

classifying a pixel as a shadow pixel is therefore adjusted individually for each tile. For this purpose, the

PDF of the CSDI is calculated in the detection algorithm and the threshold is set to a CSDI of 0.04 below

the maximum of the PDF. All pixels whose CSDI is below this threshold but greater than 0 are classi�ed

here as cloud shadow pixels.

4.2.3. Evaluation of the adjustet scene classi�cation

Both cloud and shadow detection algorithms (further: scene classi�cation) were computed for three

10x10 km2 sized trade cumulus scenes to compare the accuracy with the Sentinel-2 Fmask classi�cation

by Zhu et al. (2015) and scene classi�cation from the operational Sen2Cor processor. Scenes were visually

selected considering all observation days used in the analysis, di�erent optical thicknesses and cloud sizes,

and di�erent re�ectances of the sunlit pixels. As evident in the RGBs of the scenes shown in Figure 5, the
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left scene from 31-Jan-2020 demonstrate �at and thin cumulus clouds over typical background re�ectance.

In contrast, the two scenes from 02-Feb-2020 and 05-Feb-2020 di�er primarily in their cloud fraction and

the re�ectances of the sunlit ocean surface. The right scene was additionally selected from the eastern

edge of the observation path, and thus the observation was made using a relatively large detector zenith

angle.

In the �gures below, the scene classi�cation forms a layer superimposed on the gray values of a re�ectance

averaged from all channels (band 12, band 8, band 4, and band 3) included in the computation. The

re�ectance was limited to a maximum of 0.1, especially to analyze the exact location of cloud edges

and shaded cloud areas. Pixels identi�ed as con�dently cloudy (Sen2Cor: cloud, high probability) were

masked white, pixels identi�ed as probably cloudy (Sen2Cor: cloud, medium probability) were masked

yellow. Since the Fmask has only one cloud class, all pixels identi�ed as cloud are shown with white color.

Clear sunlit pixels are shown in blue, while cloud shadows on the ocean surface are indicated in brown.

In a visual evaluation with the RGB or mean re�ectance, the adjusted scene classi�cation shows good

performance. Bright pixels within optically thick cloud cover were identi�ed as con�dently cloudy, while

most of the less bright pixels at the cloud edge were identi�ed as probably cloudy. Misinterpretation of

cloudy pixels as clear is evident in shaded areas of deep cumulus clouds, especially in the middle scene.

Combining adjacent cloud pixels into a cloud object should reduce this misinterpretation. In contrast,

the detection of optically very thin and small-scale clouds succeeds well. In cases with large background

re�ectances, sporadic misinterpretations of clear pixels as cloudy occurs in the edge region of clouds

in�uenced by the horizontal photon transport.

In comparison, the results of the Fmask algorithm are similar to those. Since the Fmask is calculated

at a lower resolution and clouds are already merged into cloud objects during the analysis, the number of

pixels interpreted as clear within cloudy areas is smaller. However, the classi�cation of shaded cloud areas

on 05-Feb-2020 succeeds better with the adjusted scene classi�cation. The calculated cloud fraction in the

scenes di�er only slightly between the two detection algorithms, and are slightly higher in the Fmask.

In contrast, a comparison of the Sen2Cor scene classi�cation with the mean re�ectance reveals a mis-

classi�cation of optically thin and shaded cloud regions as clear pixels. In the scene of 31.01. this leads

to a 51% lower cloud fraction than calculated by the adjusted scene classi�cation. This may be caused

by two reasons: First, water bodies are excluded using a ratio test between a a VIS channel in the blue

wavelength range and a SWIR channel with a linear decreasing cloud probability between thresholds of

2 and 4 (Richter et al., 2011). Shaded cloud areas show ratio values larger than 2, due to a stronger

contribution from Rayleigh scattering compared to illuminated cloud ares. Secondly the re�ectance test

based on band 4 (R0.65) uses a high upper threshold, which reduces the cloud probility of optical thin

clouds too strong.

Previous analyses of the Fmask and Sen2Cor classi�cation on Sentinel-2 scenes showed higher producers

accuracy of the Fmask (78%, 85%) for cloud detection compared to the Sen2Cor (75%, 66%), highlighting

the underestimation of cloudy areas as clear pixels in the Sen2Cor mask (Tarrio et al., 2020; Zekoll et al.,

2021). The cloud producers accuracy is the ratio of pixels, which are classi�ed as cloud by the algorithm

compared to the pixels, that are subjectively visible as cloudy pixels. However, these evaluations were

performed over land surfaces and with a default bu�er radius of 60m in the Fmask, which also basically

assigned cloud edges to the cloud object. For the selected ocean scenes, there are larger di�erences between

the two scene classi�cations.

A visual evaluation of cloud shadow detection accuracy in the adjusted scene classi�cation also show

good results. In particular, larger cloud shadows of optically thick cumulus clouds are detected precisely,
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Figure 5: Comparison of the adjusted cloud and shadow detection (scene classi�cation), the Sentinel 2

Fmask and the operational Sen2Cor scene classi�cation for three 10x10 km2 trade cumulus scenes.

The RGB image of the scene is shown above, the images below show a mean re�ectance overlaid

by the scene classi�cation of each algorithm (white: con�dently cloudy, yellow: probably cloudy,

blue: clear pixel, brown: cloud shadow). The calculated scene fractions of clouds and shadows

are shown in the bottom right.
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but the method derived directly from the re�ectance contrast allows also the detection of very small cloud

shadows, as can be seen in the scene of 05-Feb-2020. A false detection of cloud shadows as clear pixels

can occur with optically thinner clouds, whose shadow areas are still partially reached by direct solar

radiation. Furthermore, some misclassi�cations of ocean wave shadows as cloud shadows are visible in the

scene of 05-Feb-2020. Pevious analyses also indicate a low overall accuracy of 50% for the detection of

cloud shadows using the Fmask algorithm.

In summary, successful detection of clouds and cloud shadows over ocean surfaces is possible with the

adjusted scene classi�cation and it can feature similar or even better results compared to established

algorithms. Considering the selection of scenes according to the presence of low cloud cover and the

absence of high cirrus, this method can be used for further analysis and the cloud base height estimation.

4.3. Geometrical cloud base height estimation

In the following, a method for estimating CBH based on the geometric relationship between detected cloud

and shadow objects is presented. The method is compared with shipbased ceilometer measurements of

the �rst cloud base height (CBH1) on the 10-Feb-2020.

4.3.1. Background of cloud height estimation using passive satellite remote sensing

The derivation of cloud heights by means of passive satellite remote sensing is di�cult, since, in contrast

to active remote sensing, there is no information about the propagation time of radiation between the

scattering object and the sensor. For this reason, several approaches have been developed to determine

both CBH and cloud top height of low clouds from measurements of medium- to high-resolution satellite

sensors.

Cloud top height estimations of shallow cumulus clouds are often performed using the brightness tem-

perature in the infrared spectral region. This is done by converting local minima of brightness temperature

in completely cloudy pixels to a cloud top height using local atmospheric pro�les (e.g. Zhao and Di Giro-

lamo, 2007) or zonally averaged, "apparent lapse rates" of brightness temperature (e.g. Baum et al., 2012;

Mieslinger et al., 2019). Other approaches to derive cloud top height are based on stereoscopic techniques,

that analyze disparities caused by cloud height and wind drift in detected cloud features from at least two

observation angles (e.g. Hasler, 1981; Seiz et al., 2006).

The estimation of CBH using satellite remote sensing recieved less attention, what makes it interesting

to focus on this cloud property. Böhm et al. (2019) showed that the estimation of CBH of convective

clouds with homogeneous condensation level is possible via the spatial minimum value of cloud top height

derived by the stereoscopic method. However, this method already requires a successful cloud top height

product. Berendes et al. (1992) calculated CBH in high-resolution Landsat-MSS shallow cumulus scenes

from the geometric relationship between the edge of a cloud object and an associated cloud shadow object,

as well as the solar and observation angles. The pairing of two objects is performed using a Generalized

Hough Transformation and the assumption that the cloud height is constant within 100m around the

edges of the clouds. Deriving the height from the cloud-shadow geometry is also used in some object-

based cloud detection algorithms such as Fmask by Zhu and Woodcock (2012) or a cloud mask for Chinese

medium-high resolution satellite sensors by Zhong et al. (2017) to predict the shadow position.

Since Sentinel-2 MSI does not have a channel in the infrared spectral range, an estimate using the

brightness temperature is not possible. A stereoscopic method would be conceivable due to the detector

arrangement, but requires knowledge of the wind speed. Therefore, an estimation based on geometry
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between cloud and shadow objects is developed in the following:

4.3.2. Cloud base height retrieval algorithm

Figure 6: Schematic representation of the CBH estimation with reference points (A-H) in the X-Z cross

section (a) and X-Y base section (b).

Figure 6 displays a schemtic drawing of the CBH geometry and its estimation based on a satellite image

as well as the knowledge of sun- and satellite geometry. The basic idea of the approach is that the height

of a cloud object can be determinded from the horizontal distance d = BD between the center of the

cloud object B and the center of an associated shadow object D. The geometry is �rst considered in a

vertical cross-section. Assuming that a satellite sensor would look to nadir, the CBH hbase = BH could

be calculated with the solar zenith angle θsun as

hbase =
d

tan(θsun)
. (14)

Since in the edge region of the observation path the observation angles θsat deviate from the zenith by

up to 12°, this leads to a displacement of the elevated cloud object by the distance d′sat = AB:

d′sat = hbase · tan(θsat). (15)

It must be taken into account in the cloud height calculation that the distance between the observed

center A of the cloud and the center shadow D di�ers from the real distance as dobs = AD = d− d′sat, and

the height estimation changes to

hbase =
dobs

tan(θsun)− tan(θsat)
. (16)

In the three-dimensional perspective, the azimuth angle of the sun ϕsun as well as the satellite sensors

ϕsat must be considered additionally. The latter results from the staggered arrangement of the sensors.
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Therefore the components dx and dy of the real displacement vector dx = d · sin(ϕsun), dy = d · cos(ϕsun)

between the cloud object and the shadow object can be calculated as

dx = hbase · [tan(θsun) · sin(180° − ϕsun) + tan(θsat) · sin(180° − ϕsat)] (17)

dy = hbase · [tan(θsun) · cos(180° − ϕsun) + tan(θsat) · cos(180° − ϕsat)]. (18)

The estimation of CBH is based on the assumption of a �at cloud. As can be seen in the schematic

drawing in Figure 6, the vertical extension of cumulus clouds can lead not only to shading of cloud areas

at larger solar zenith angles, but also to a surface shadow enlarged by the distance ∆d = EF . Berendes

et al. (1992) estimated the resulting error in the cloud height calculation ∆h assuming a semicircular cloud

with radius r to be

∆hbase =
r · (1− cos(θsun))

sin(θsun)
. (19)

However, trade wind cumulus shows various shapes, which deviate strongly from a semicircular assump-

tion. Since a vertical extension can also lead to di�erent shapes of cloud and its shadow, the matching

method used here deviates from the Generalized Hough Transformation in Berendes et al. (1992). Instead

the selection method by Zhu and Woodcock (2012) based on the area overlap between cloud and shadow

object is chosen in the following.

The cloud-shadow matching is based on scene classi�cation derived by the cloud and shadow masking

algorithms. Both pixels labeled as con�dently cloudy or probably cloudy are considered in the binary

decision between clear and cloudy pixels. The required solar and observation angles are provided in the

datasets with a resolution of 5x5 km2. To achieve higher accuracy in the calculation of the vector between

cloud and shadow, the angles are interpolated to the spatial sensor resolution of 10m. The procedure of

the object matching is as follows:

(1) The scene classi�cation is subjected to a binary morphology operation of opening and closing to

reduce objects and holes caused by noise.

(2) Pixels adjustent to other pixels of the same classi�cation (using 8-way connectedness) are considered

as one cloud object respectively shadow object.

(3) All objects having an area less than 100 pixels (10,000m2) are removed to avoid misdetected objects

near the edges of clouds and in shaded regions of ocean waves.

(4) For each cloud object, the azimuth angle of the motion vector is calculated from the solar and

observation angles at the center of the object. The cloud object is shifted along the vector calculated

from equations 17 and 18 in a predetermined distance interval. Since the scenes are selected by the

presence of low cumulus clouds, the distance is limited to 200 pixels (corresponding to a height of

about 2800m-3000m). For each moving step, the overlapping area with shadow objects is calculated

and normalized with the area of the cloud object (match similarity).

(5) If the match similarity between shifted cloud object and a shadow object reaches a maximum with

a value Aoverlap

Acloud
≥ 0.3, the CBH is calculated from the moving distance at the point of maximum

similarity using equation 14. The threshold value was adopted from Zhu and Woodcock (2012)

to reduce mismatches. To avoid misinterpretation of smaller �uctuations as maxima, the match
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similarity functions are smoothed using a Gaussian �lter. If multiple maxima are detected within

the moving distance, the CBH is calculated from the �rst maximum, that exceeds the threshold.
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Figure 7: Cloud-shadow matching with 3 example cloud objects, (a) area overlap between the moved cloud

objects and shadow objects as a function of CBH. The maximum is indicated by a vertical line.

(b) Mean re�ectance, cloud objects (�lled contours), shadow objects (yellow lines) and moved

cloud objects at maximum overlap (�lled contours with dots).

Figure 7 illustrades the CBH calculation based on an example scene containing 3 shallow cumulus clouds.

The detected cloud objects (�lled contours) could be successfully matched to the identi�ed shadow objects

(yellow contours), and show as maximum in the match similarity function at a CBH between 1047m

and 1200m. However, despite interpolation of detector and sun angles, the matched cloud objects (�lled

contours with dots) in this scene show a slight shift to the shadow objects. This could be a consequence

of averaging the viewing angles over all bands involved in the scene classi�cation. Also noticeable are

the signi�cant di�erences in the shape of associated objects, which would make a shape-based assignment

without smoothing di�cult, especially for complex object structures.

4.3.3. Comparison with ground-based ceilometer data

In the following, the accuracy of CBH estimation will be evaluated by comparing it to established remote

sensing methods. As shown in section , only a small selection of scenes with overlap between observation

path and ship measurements in the campaign period is available. The comparison is therefore limited to

2 trade cumulus scenes recorded on 10-Feb-2020 in the area 13.9°N 57.2°W (tile T21PVR) and 10.5°N,

58.9°W (tile T21PTM), respectively. Considering a cloud scene as homogeneous as possible, and a su�cient

number of detected cloud objects, a scene size of 20x20 km2 was selected. The two scenes di�er in cloud

fraction of 6.6% and 11.4%, respectively, but have a similar number of approximately 175 detected cloud

objects of at least 10.000m2 in size.

For comparison, the CBH1 from ceilometer measurements on board the research vessels Meteor and
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L'Atalante is used. The distance traveled by the ships within the hour of the over�ight (14UTC - 15UTC,

yellow line) and the coordinates at the time of the scene recording (14:29UTC, yellow dot) are shown in

Figure 8(a). Within the observation interval, 26 cloud base heights in the upper scene and 48 cloud base

heights in the lower scene were recorded by the ceilometer.

The estimated CBHs are shown as color overlays in Figure 5(a) and as frequency distributions for both

scenes and measurement methods in Figure 5(b). The height of most of the detected cloud objects in

tile T21PVR was determined to be between 1000m and 1300m using the presented matching method,

with a slightly increasing trend from north to south within the section. However, some cloud objects were

assigned unrealistic large CBH up to 2200m, since no higher-level clouds can be determined by visual

observation. These objects are often located in the direction of the sun's azimuth angle to neighboring

cloud objects. This causes that a part of the cloud shadow is obscured by the neighboring cloud. As

a result, the match similarity reaches the threshold �rstly at the next cloud shadow of the neighboring

cloud. This results in a too great matching ditstance. For larger cloud objects whose shadow is obscured,

the detected shadow area is too small in proportion and the match similarity remains below the threshold

of 0.3. Therefore, no cloud height is assigned to these clouds.

In the lower tile T21PUM, these connections between cloud and incorrectly assigned shadow objects

occur somewhat more frequently as a result of the higher cloud fraction. In addition, there are more

smaller cloud objects in the edge area of larger clouds, whose CBH calculation was not carried out because

the object size was too small. Assuming a homogeneous CBH within a small image section, this exclusion

of small objects, however, enables a faster calculation.

The distribution of CBH calculated by the Sentinel-2 algorithm shown in Figure 8(b) shows a small

scattering around the mean value of 1099m for Tile T21PVR, while in Tile T21PTM the frequency

maximum around the mean value of 1173m is much broader. In both scenes, the CBH1 detected by

the ceilometer are in a very narrow range with a mean value of 757m and 814m, which underlines the

assumption of a largely homogeneous CBH within the scene. Consequently, too high CBHs are calculated

by the algorithm for the majority of the cloud objects. The cause of the overestimation is probably the

extension of the shadow area along the displacement vector for vertically extend clouds. As shown in

equation 19, this discrepancy can be corrected for the distance of the sunward edges of the cloud and

shadow object assuming a semicircular cloud, or used to estimate the cloud top height using known CBHs.

Furthermore, a correction of the overestimation could be possible by simplifying the object geometry to

elliptical objects and comparing the eccentricity of both objects. However, both correction methods will

be successful only for low cloud fraction and higher zenith angles, and may exacerbate the deviation of

the calculated cloud height in case of overlap between cloud and shadow objects. Successful base height

estimation at higher occultation levels requires the introduction of new estimation methods. Potential

could be o�ered by the height-dependent shift of the object in the horizontal when viewed with two

di�erent detectors, as used by Frantz et al. (2018) for cloud detection. However, since the wind also leads

to a displacement of cloud objects due to the time shift between two observing channels, knowledge of

an average wind vector and the introduction of a single-band cloudmask is required for accurate cloud

height determination of the cloud edge. Therefore, the evaluation of the cloud height in the context of

this work will be performed without further correction and the observed overestimation has to be taken

into account.
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Figure 8: (a) Mean re�ectance and estimated CBHs of two 20x20 km2 scenes at 10th February 2020 as well

as track (yellow line) and position (yellow dot) of the research vessels within the observation

hour and time. (b) Distributions of estimated CBH from Ceilometer (CBH1) and Sentinel-2

measurements.
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5. Analysis of Sentinel-2 MSI trade cumulus scenes

In the following, cloud fraction, shadow fraction, and cloud base heights (CBH) calculated from Sentinel-2

MSI observations, as well as cloud size distributions are presented for 9 selected trade cumulus scenes. The

scenes were each taken from a cross-section of the 31-Jan-2020, 02-Feb-2020, and 05-Feb-2020 observation

paths. In the cross section from 02-Feb-2020, one scene (tile T21QXU) was excluded from the calculation

due to the presence of a stratiform cloud layer. The selected sections show very �ne to medium sized

cumulus clouds, which can be assigned to the organization type "Sugar" according to the classi�cation

of mesoscale organization by Stevens et al. (2020) due to its low degree of self-organization. However, in

the southern part of the 02-Feb-2020 cross section, a transition to the "Flower" organization type can be

observed. The RGB images, scene classi�cation, and calculated cloud heights for all scenes are shown in

Figures 14, 15, and 16 in the appendix of the thesis.

5.1. Cloud and shadow fraction

The signi�cance of a cloud cover value depends not only on the chosen determination method, but also

on the size of the area for which it is determined. Therefore, in order to show not only the mean cloud

fraction, but also the di�erences within a scene, each tile was divided into 16 subscenes with a size of

about 27.5x27.5 km2 and both the amount of cloud objects and shadow objects in the total area of the

subscene were calculated for the highest sensor resolution of 10m. The size of the subscenes is thus close

to the horizontal grid size of the current ECMWF reanalysis dataset ERA5 of 31 km, (e.g. Hersbach et al.,

2020).

Figure 9(a) displays the statistics of the calculated cloud fraction and �gure 9(b) the statistics of the

shadow fraction visible from the satellite for all selected scenes. In each case, the boxplots show the median

of the values as a red line, the mean as a red triangle, lower and upper quartiles as boundaries of the box as

well as the 05th and 95th percentiles as boundaries of the whiskers. To avoid misinterpretation, the subsets

of scenes, which contains the edge of the observation path, were excluded from the fraction calculation.

In some tiles, therefore, less than 16 subsets were included in the analysis.

Cloud fraction varies signi�cantly both within a tile and between scenes. The lowest value of 0.01 was

determined for a nearly cloud-free subset on 31-Jan-2020 (tile T21PTM), the highest value of 0.29 for a

subset on 02-Feb-2020 (tile T21QZU), where two larger cloud clusters could be observed. In addition, for

tile T21PTM, which is largely interspersed with optically thin and very small-scale cumulus, the lowest

mean fraction value of 0.037 was calculated; the highest mean fractions were found in tiles T21QZU and

T21PWP (only 4 subsets at the edge of the observation footprint) due to the presence of some larger

cumulus clusters and cloud streets.

For the remaining tiles, cloud fraction was mostly found in a range between 0.04 and 0.11, which also

corresponds to the uncertainty range of the lower and upper quartiles of all subsets. The mean cloud

fraction in this thesis is 0.083. This value is close to the cloud fraction of 0.086 and 0.087 determined by

Zhao and Di Girolamo (2007) for 152 and Mieslinger et al. (2019) for 1158 Terra-ASTER trade cumulus

scenes with 15m resolution, respectively. Furthermore, 70% of the scenes in this analysis shows cloud

fractions below 0.1, which is consistent with Zhao and Di Girolamo (2007). This indicates that the

nature of the shallow cumulus scenes analyzed in this study corresponds to previous investigations using

a di�erent high resolution satellite sensor. It is important to note that the cloud detection algorithm was

used to estimate CBH with a cloud conservative detection method. The aforementioned cloud fraction

evaluations are also based on cloud conservative estimates and a comparison is thus possible. However,
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Figure 9: Boxplots of (a) estimated cloud fraction and (b) estimated shadow fraction based on Sentinel-2

measurements for 27.5x27.5 km2 subsets of 9 trade cumulus scenes. The mean is indicated by a

red line, the boxes shows the 25th and 75th percentile, the whiskers the 5th and 95th percentile.

optically thin cloud parts, especially in the fringes of cumulus clouds, are systematically assigned to the

clear category with this method, which leads to considerably lower cloud fractions compared to clear

conservative estimates (Zhao and Di Girolamo, 2006; Mieslinger et al., 2021).

The derived cloud fraction di�ers signi�cantly from climatological mean cloud amounts of low clouds

in the region. Ground-based remote sensing measurements using Ceilometer from the Barbados Cloud

Observatory (BCO) showed mean cloud fraction of 0.21-0.22 at the height of lifting condensation level

with a small seasonality (Nuijens et al., 2014; Stevens et al., 2016). Terra-MODIS datasets showed no 5-

day mean cloud fraction below 0.1 (Brueck et al., 2015). Besides the cloud conservative estimation method,

one reason for the di�erences may be the selection of scenes according to the presence of broken cumulus

clouds and the absence of stratocumulus and deep convective clouds, which also occurred repeatedly in

the Sentinel-2 observations during the campaign period. Thus, the determined cloud fraction can be taken

as an approximation for a typical cloud cover of shallow, broken trade cumulus, but not as representative

for the total cover of low cloudiness in the observation area. Another reason for the di�erences is thought

to be the overestimation of cloud fraction from broken clouds in long-term satellite observations with
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a coarser sensor resolution as in Brueck et al. (2015). The dependence of the determined coverage on

detector resolution is presented in more detail in section 5.4. On the other hand, the cloud fraction also

slightly overestimates the real cloud base fraction, since

The determined fraction of shadow areas in the Sentinel-2 MSI scenes shows stronger variations between

the subsets than cloud fraction. A very small mean value of 0.002 was calculated for the shadow fraction

of the subsets in tile T21PTM on 31-Jan-2020, while in some subsets even a larger shadow fraction

than cloud fraction was found up to 0.32 (02-Feb-2020, tile T21QZU). The mean value of all determined

shadow fractions is 0.067 and 50% of the subsets show fractions within 0.025-0.09, which is slightly below

the determined cloud fractions.

The ratio between cloud and shadow fraction is determined by several factors. On the one hand, the

overlap of cloud and shadow objects leads to a reduced shadow fraction, especially at low solar zenith

angles, while vertically thick cumulus clouds can also cause an increase of the total shadow area. In

addition, as shown in section 4.2.3, the accuracy of the determination of the shaded areas depends on

the contrast between the illuminated and shaded ocean surfaces. Since the shadow detection has been

adapted to reduce the misinterpretation of ocean pixels as shaded areas, a methodological underestimation

of the shaded area, such as in tile T21PTM, is possible. Due to the dependence of the shadow fraction

on solar and satellite geometry, it has only been determined in the context of method evaluations so far.

Nevertheless, knowledge of the shadow fraction of cloud-free pixels is signi�cant for understanding 3D

radiative transfer in broken cumulus clouds, and the high-resolution data sets of the Sentinel-2 MSI, in

contrast to coarser satellite records, allow for more detailed observations on the topic.

5.2. Cloud base height

Based on the matching algorithm between cloud objects and corresponding objects, a determination of the

CBH could be performed for all scenes. In order to avoid misconnections caused by many smaller cloud

objects in the edge region of a larger cumulus cloud as well as by the misinterpretation of shaded wave

regions as shadow pixels, all objects with an area of less than 100 pixels were excluded in the algorithm.

For the calculation of the displacement vector between cloud and shadow object, the sun angles as well as

the observation angles of all bands involved in cloud and shadow detection (bands 2, 3, 4, 8, and 12) were

averaged and interpolated to the 10m observation grid. To avoid mismatches, no CBHs were calculated

within 200 pixels of the edge of the tile.

Figure 10 displays the statistics of the calculated CBH using the same boxplot measures as in the

fraction statistics. The number of successfully paired objects varies between the analyzed scenes, ranging

from 187 to 4486 objects. Causes for the di�erent numbers can be found in the success of shadow detection

in addition to the smaller data sets in the edge of the observation path and the di�erent cloud fractions

and cloud sizes. Especially with the optically thin cloud cover on 31-Jan-2020, numerous cloud objects

could not be assigned due to too few detected shadows.

The distribution of the CBH shows a frequency maximum of a few tens to a few hundred meters width

for nearly all scenes. Since the number of cloud objects is clearly dominated by the smaller cloud objects

(see section 5.3), the use of the frequency maximum can reduce the inclusion of larger and thus deeper

cloud objects in the determination of the CBH of a scene. In particular, the mean value is not meaningful

due to the positive deviation of the determined CBH for larger objects.

The frequency maximum of CBH of all scenes is at 858m and the median of the CBH is calculated 933m.

Between observation days, the frequency maxima di�ered slightly. The lowest CBHs of 550m-850m were

determined on 31-Jan-2020, while the higher CBHs of 875m-1025m were determined on 05-Feb-2020.
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Figure 10: Boxplots of estimated cloud base height of trade cumulus clouds in 9 Sentinel-2 tiles

(105x105 km2) based on pairing of detected cloud and shadow objects. The mean is indi-

cated by a red line, the boxes shows the 25th and 75th percentile, the whiskers the 5th and 95th

percentile of the cloud base height. The numbers indicate the number of paired objects within

the tile.

The variability between the observation days agrees with the results from Stephan et al. (2021), who

used ascending and descending soundings from all research vessels and the BCO, as well as ceilometer

measurements on board the research vessel Meteor. The observed CBH as well as the determined lift-

ing condensation level were 500-600m on 31-Jan-2020, whereas on 05-Feb-2020, they changed to about

750m. This comparison hightlights the possibility of using Sentinel-2 MSI observations for CBH esti-

mation, although similar to the direct comparison with ceilometer measurements, higher values of CBH

were calculated by the satellite algorithm. It must also be noted that the radiosonde and ceilometer

measurements were taken up to a few hundred kilometers away from the considered scenes.

However, the estimation of CBH with Sentinel-2 observations also has clear limitations. As highlighted

by the large number of observed cloud heights on both sides of the frequency maximum in Figure 10,

an increase in cloud fraction or the formation of cloud objects along the displacement vector leads to

mismatches between cloud and shadow objects. The change in cloud shadow eccentricity with deeper clouds

o�ers potential for cloud vertical tickness and cloud top height estimations. Hoever, the presence of deeper

cumulus clouds in this evaluation results in numerous false CBHs. A further analysis of the dependence

between CBH and cloud size could allow for exclusion of deep clouds from base height calcualtions.

Therefore, the best results with this method are expected for very shallow cloud �elds with large distances

between individual cloud objects. If the shadow detection succeeds despite for the coverage of optically

very thin clouds, the Sentinel-2 CBH estimation can provide a lot more information of the distribution

of CBH within a region than can be achieved by ground base remote sensing measurements, e.g., using a

ceilometer.
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5.3. Cloud size statistics

The high spatial resolution of 10m together with the wide observation path of 290 km allows to observe

the abundance of clouds from a wide range of size ranges. For each detected cloud object, the area was

converted to an equivalent diameter D using equation 1 and frequency distributions within the scene were

established from all calculated diameters. When evaluating the object measures, it must be noted that

deep trade cumulus can lead to an increase in the determined cross-sectional area, since the observation

was performed with zenith angles up to 14°. For comparability with previous observations of cloud size

distributions, two di�erent binning methods, one using constant width bins and one using exponentially

increasing bins, were used. Following Mieslinger et al. (2019), these methods are referred to as linear and

logarithmic binning, respectively.
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Figure 11: Cloud size distributions of trade cumulus clouds detected in 9 Sentinel-2 MSI scenes. The

colored lines show the distribution of cloud size for individual scenes, the black line for all

scenes. The distributions were calculated in (a) using a linear binning and a constant width of

50m and in (b) a logarithmic binning. The thick grey line shows the power-law regression line

without using a scale break size. The thick black lines show the splitted power-law regression

lines with exponents b1 and b2. The scale break between the two regressions (dashed line) at

800m diameter was obtained from minimizing the sum of squared residuals.

Figure 11(a) shows the calculated cloud size distribution using linear binning with a constant class width

of 50m. The cloud size distributions of the individual scenes are shown in color, and the distribution of

all cloud objects included in the evaluation is shown in black. Since both axes in the diagram are chosen

logarithmically and the distributions have one or more straight lines, approximations can be made using

power laws. The gray line shows the regression obtained by approximating equation 5 while minimizing the

squared residuals for the entire data set. It leads to a scaling parameter blin = −2.82, which means, that

the number of cloud objects exponentially decreases with increasing cloud size. In particular, as shown in

�gure 11(b), the distributions in the middle size range show a change in slope, and can be approximated
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much better by 2 independent regressions. Minimizing the sum of all squared residuals of both regressions

yielded the best �t for a scale break size Dc of 800m, which is plotted as a black dashed line in �gure

11. The scaling parameters of the double power law distribution are blin,1 = −2.03 for D ≤ Dc and

blin,2 = −3.11 for D ≥ Dc.

Since in the tail of the linear binned distribution of cloud sizes are no longer assigned to all bins,

they still have a strong weight in the regression calculation, and can lead to large deviations in the

determined regression parameters (Clauset et al., 2009). The cut-o� size is therefore essential in linear

binning methods and was chosen at 7 km equivalent diameter following Zhao and Di Girolamo (2007) and

Mieslinger et al. (2019). The choice of logarithmic binning allows the inclusion of all cloud sizes in the

regression calculation. The derived single and double power law distributions with the scaling parameters

blog = −1.57 and blog,1 = −0.88, respectively, and blog,2 = −2.49 around the scale break of 800m are shown

in Figure 11(b). According to equation 6: b(lin(D)) ∝ b(log(D))−1, the scaling parameters di�er slightly

from those determined with linear binning. In contrast to linear binning, the area under the function in

logarithmic binning gives the contribution to the total equivalent diameter.

The equidistant size classes in the logarithmic plot also allow comparison of individual scenes. The most

scenes vary only slightly in number density up to the middle size range by a maximum factor of 1.5. Only

one scene at 31-Jan-2020 January (T21PTM) shows a very high number of smallest cloud objects, which

causes the number density of all other size classes to be signi�cantly lower. All scenes of this day also show

a slightly larger slope in the upper part, and a smaller scale break size of about 600m. Minimizing the

quadratic residuals to determine the scale break size therefore resulted in similarly successful regressions

for all scale breaks in a size range between 600m and 900m as well.

Table 4 compares the scaling parameters and scale breaks obtained in this evaluation with those of

previous publications that used high-resolution satellite remote sensing. In particular, comparing two

evaluations based on large Terra-ASTER datasets (Zhao and Di Girolamo, 2007; Mieslinger et al., 2019),

similar scaling parameters b, b1, and b2 were obtained using both binning methods, with slightly steeper

distributions in this evaluation than in Mieslinger et al. (2019).

There are di�erences with the evaluation of Koren et al. (2008), who derived a scaling parameter of

b(log(A)) = −1.3 size distributions of the cloud area based on 5 Landsat-EMT+ scenes, which corresponds

to a b(lin(D)) = −3.6 according to equation 9. They concluded from the strongly negative scaling

parameter that the frequency distribution of the total area of clouds with a certain diameter decreases

stricly. This follows from equation 10 and dF
dD < 0 for b < −2. Thus the smallest clouds would contribute

most to the total area and cloud fraction, respectively. However, the analysis of the Sentinel-2 datasets

leads to a di�erent sign in the expected increase of the cloud fraction distribution for all cloud diameters

below the scale break, since the scaling parameter is around b = 2 depending on the binning method. The

strongly negative slope parameters b2 in all publications therfore indicate, that larger clouds contribute

less to the total cloud area.

The calculated scale break size is slightly larger than that of the other evaluations. The physical

interpretation of the scale break in the cloud size distribution remains a subject of research. Neggers

et al. (2003) used Large Eddy Simulation (LES) simulations to show that the vertical thickness of the

boundary layer below the CBH as well as the vertical wind shear have an in�uence on the size of the

scale break. They postulated that the cloud size distribution below the scale break is dominated by the

coherent turbulence structure below the cloud, whereas the cloud size distribution above the scale break

is dominated by the conversion of larger clouds into smaller ones. The largest individual convective cells

also lie in this size range (Cahalan and Joseph, 1989). Since the determined CBHs of the scenes - taking
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Methods Scaling parameters

Study Nscenes Binning Size limit b b1 b2 Ds

Cahalan and Joseph (1989) 19 log(
√
(A)) - -2.5 -1.6 -3.3 0.5 km

Zhao and Di Girolamo (2007) 152 lin(D) 7 km -2.85 -1.88 -3.18 0.6 km

Koren et al. (2008) 5 log(A) - -3.6 - - -

Mieslinger et al. (2019) 1158
lin(D)

log(D)

7 km

-

-

-2.55

-1.6

-1.68

-3.23

-3.12
0.59 km

Sentinel-2 MSI 9
lin(D)

log(D)

7 km

-

-2.82

-2.57

-2.03

-1.88

-3.11

-3.49
0.8 km

Table 4: Cloud-size statistics from previous observation studies using high-resolution satellite sensors. The

table shows the Number of analyzed satellite scenes (Nscenes), the binning scheme (linear or

logarithmic) and the cloud measure (cloud equivalent diameter D or cloud area A), the maximum

cloud equivalent diameter used in the linear regressions, the scaling parameters of the single power

law regression b and double power-law regression b1 and b2 as well as the scale break size Ds. All

values are converted to natural scaling parameters using euqations 8 and 9

into account the systematic overestimation - are in the range of the scale break, and the scale break in

the scenes of 31-Jan-2020 already occurs at smaller equivalent diameters of 600m, this evaluation also

strengthens the arguments for the in�uence of the vertical thickness of the lower cloud layer. However,

Zhao and Di Girolamo (2007) point out that the scale break may also be a consequence of the regression

method. This follows from the inclusion of rare but large clouds, which can in�uence the determination of

the regression. Mieslinger et al. (2019) didn't �nd signi�cant variations in cloud �eld properties with the

vertical wind shear and conclude a minor importance. Similarly, both model and satellite sensor resolution

can in�uence the strength and location of the scale break (Neggers et al., 2003). Therefore, a closer look

at the properties of clouds and cloud size distributions as a function of sensor resolution is given below.

5.4. Resolution e�ects on cloud optical properties

Trade cumulus observations are possible for the �rst time at a spatial resolution of 10m using Sentinel-

2 MSI observations. Although many publications on the cloud fraction and cloud size distribution of

trade cumulus are based on high-resolution satellite data with spatial resolutions of 15m-30m, the higher

resolution allows theoretical considerations on the cloud properties below the sensor resolution to be

supported by observations. Previous analyses by Koren et al. (2008) and Zhao and Di Girolamo (2007)

based on satellite observations and by Neggers et al. (2003) based on LES model simulations di�er with

respect to the in�uence of small cumulus clouds on total cloud fraction. On the one hand, based on

cloud size distributions with a scaling parameter of b = −3.6 and assuming a continuous cloud size, Koren

et al. (2008) postulated that small cumulus clouds below the detector resolution consitutes the largest

contribution to the total cloud fraction. On the other hand, Zhao and Di Girolamo (2007) and Neggers

et al. (2003) showed the presence of an intermediate dominating cloud size equivalent to a cloud diameter

in the scale break region.

Figure 12(a) shows the distribution of the total area of clouds of an equivalent diameter calculated from

Sentinel-2 observations as a fraction of the total cloud cover for the highest sensor resolution. Contrary

to the assumption of a dominant cloud size in the scale break region, all size classes up to an equivalent

diameter of 500m show a similar contribution. No single scene shows a signi�cant increase in cloud cover
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fraction with increasing cloud size in the size classes below the scale break, but a single scene (T21PTM)

shows a decrease in this size range. Consequently, the Sentinel-2 observations support the hypothesis of

Koren et al. (2008) of a large contribution to the total cloud fraction from small cloud sizes. However, not

that only the smallest detectable cloud objects make this contribution. Figure 12(b) displays the same

distributions of the contribution to the total cloud fraction as blue lines, but as a cumulative function.

The importance of small cumulus clouds to the determined total cloud fraction is also evident here, as 50%

of the contribution comes from clouds less than 1 km in diameter and 70% of the contribution comes from

clouds less than 2 km in diameter. The contribution by smaller clouds is thus on average even stronger in

comparison to Zhao and Di Girolamo (2007).

To investigate the in�uence of detector resolution on cloud size distribution, the resolution of the re-

�ectance data sets was converted to coarser resolutions by reducing several pixels into a mean re�ectance

value, and then scene classi�cation was applied to these data sets. The observation of the scenes by

the Terra-MODIS or Geostationary Operational Enviromental Satellite (GOES)-Advanced Baseline Im-

ager (ABI) sensor was simulated acoording to Koren et al. (2008) by computing data sets with the spatial

resolution of 240m (corresponding to the highest resolution of MODIS VIS bands), 960m (MODIS cloud

mask resolution), and 1920m (GOES-ABI cloud mask resolution) using the local re�ectance mean. Figures

12(c-e) display the mean re�ectance and the scene classi�cation of a trade cumulus scene in tile T21PUP

on 05-Feb-2020 for three di�erent resolutions. One the one hand, it can be noticed in the comparison of

the 240m resolution with the 10m resolution, that a worse detector resolution leads to the reduction of

the mean re�ectance of smallest cloud objects by averaging in surrounding ocean re�ectances below the

threshold for cloud detection. On the other hand, minima of the re�ectance neighboring area of large

re�ectances are raised and included in the cloud mask, thereby grouping neighboring clouds into larger

objects. As it is visible in the 1920m scene, it is clear that a coarser resolution reduces the number of

cloud objects to a few very large cloud objects.

As a result, the cumulative function of the fractions of clouds of a given size in the total fraction in �gure

12(b) also shows a shift toward larger equivalent diameters with coarser detector resolution. This means

that when the detector resolution is changed to 20m, only 45% of the total cloud fraction is contributed

by clouds with D ≤ 1 km, and when the scenes are detected using the highest MODIS channel resolution,

only 10% of the total fraction comes from this size range. In contrast, clouds above a diameter of 15 km are

not detected using 10m resolution, but contribute with 10% at 240m resolution, and 90% at a resolution

of 1920m to the total cloud cover. The consequence is a shift in the overall number distribution of cloud

sizes towards a strong decrease in the number of small clouds and a slight increase in the number of very

large clouds with increasing resolution. Accordingly, the scaling parameter of the cloud size distribution

is smaller, which can lead misrepresentations e.g. in parameterizations which uses cloud size distributions

from coarser detectors.

In addition to the number and area distribution of cloud sizes, the total area of all cloud objects and

thus the cloud fraction in the scene shown in Figure 12(c-e) also increases from 0.085 to 0.212 when the

resolution is changed to 1920m. On average across all scenes, cloud fraction changes from 0.08 to 0.135

at a resolution of 960m and to 0.16 at a resolution of 1920m, as shown in Figure 12(f). This determined

change is below the more than twofold overestimation of the cloud fraction found in the comparison of

Terra-ASTER (15m resolution) and MODIS data (1 km resolution) (Zhao and Di Girolamo, 2006). A

direct comparison of Sentinel-2 observations with observational datasets from other satellite sensors is

therefore an important further step of consideration, but is beyond the scope of this work.

However, the change in the cloud fraction of the individual scenes di�ers signi�cantly. Up to a detector
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Figure 12: (a) Cumulative distribution of normalized cloud fraction detected in 9 Sentinel-2 MSI scenes as

a function of cloud equivalent diameter for di�erent sensor resolutions, (b-d) Mean re�ectance,

scene classi�cation and estimated cloud cover of an example cumulus scene (05-Feb-2020,

T21PUP) for 3 di�erent sensor resolutions, (e) Estimated cloud cover as function of sensor

resolution, (f) Estimated mean re�ectance of clouds in band 2 (492 nm) and band 8 (833 nm)

as function of sensor resolution
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resolution of 240m, the determined cloud fractions of all scenes increase only slightly, and the cloud

fractions of some scenes on 31-Jan-2020 also remain constant. With further coarse graining, the change

in cloud fraction di�ers between observation days: it is weaker in the scenes of 31-Jan-2020 than in the

scenes of 02-Feb-2020 and 05-Feb-2020.

One reason for this is assumed to be the presence of optically very thin cumulus clouds in the scenes

of 31-Jan-2020. For interpretation, the mean re�ectance of all cloud objects is displayed as a function of

sensor resolution for 2 channels in the blue and red visible wavelength ranges in �gure 12(g). Almost all

scenes show a strictly decreasing curve of cloud re�ectance down to 50%-60% of the 10m mean re�ectance

when resolution changes to 1920m, since at coarser resolution more ocean pixels with a low re�ectance are

mixed into the cloud objects. However, some scenes initially show a slight increase in mean re�ectance.

It is believed that in the case of optically thin cumulus clouds, a reduction in resolution initially leads

to an exclusion of pixels at the cloud edge that slip below the cloud mask threshold. This increases the

average re�ectance of the remaining pixels. With a further coarse graining, however, more and more

optically thin clouds are thus also classi�ed as clear and the cloud fraction does not increase further due

to the lack of cloud regions with a high re�ectance. Thus, the change in the cloud amount with resolution

probably depends on the ratio of the mean cloud re�ectance to the selected cloud detection threshold,

which should be taken into account when interpreting di�erent cloud detection algorithms. In addition, a

relationship to the spatial organization of the clouds is expected, since, for example, the sensitivity di�ers

between tiles T21QZU (02-Feb-2020) and T21PVP (05-Feb-2020) with similar initial cloud fraction and

mean re�ectance. In tile T21PVP the deeper and thus brighter clouds are distributed more randomly in

the scene, whereas in tile T21QYU they begin to cluster in the "Flower" organizational form. Therefore,

the large re�ectance of the large clouds in tile T21PVP dominates all areas of the scene at coarse resolution,

whereas in tile T21QYU more cloud objects outside the clusters fall below the detection thresholds.

Thus, the change in the cloud fraction with detector resolution is not a simple function that can be

applied to correct for overestimation by coarse-resolution satellites, but is determined by the observed cloud

scene and the cloud detection algorithm itself. The decrease in mean cloud re�ectance with increasing

detector resolution also indicates that the derivation of optical cloud properties with coarser resolution

satellite sensors such as the GOES-ABI using bispectral re�ectance functions (Nakajima and King, 1990)

introduces re�ectances that are too low, caused by the lack of representation of subpixel variability. It

should also be noted that these evaluations were performed with a constant cloud detection algorithm,

constant sensor geometry, and under simple spatial averaging of re�ectances. Data sets from other satellite

sensors may di�er signi�cantly due to di�erent bands, as well as di�erent sensor observation angles for

both cloud and ocean re�ectances.
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6. Conclusion and Outlook

This thesis has used Sentinel-2 MSI satellite imagery for the �rst time to characterize the macrophysical

properties of tropical marine trade cumulus clouds in terms of their cloud fraction, shadow fraction, cloud

size distribution, and cloud base height. The extension of the satellite observations to the maritime area

east of Barbados (9.5°-17°N, 53.5°-59.5°W) within the EUREC4A campaign in January and February 2020

forms the basis for the investigation of 9 trade cumulus scenes with a size of 110x110 km2. The high spatial

resolution of the MSI channels of up to 10m provides the basis for the study of very small to medium

sized clouds, which were assigned to the mesoscale organization type "Sugar" according to Stevens et al.

(2020).

One objective of this work was to develop an algorithm for the satellite-based estimation of cloud

base height of trade cumulus using the parallax of clouds and cloud shadows. Since this work is the

�rst e�ord to investigate cloud properties over ocean surfaces using Sentinel-2 MSI observations, a cloud-

conservative cloud detection algorithm developed for Terra-ASTER by Werner et al. (2016) was adapted.

The decision tree for classifying pixels as con�dently cloudy, probably cloudy, probably clear, or con�dently

clear includes two limit tests and two ratio tests. The thresholds were adjusted for the sensor characteristics

in this evaluation. Ocean areas were separated into shaded and sunlit areas using the cloud shadow

detection index (CSDI) developed by Amin et al. (2012). The high variability of re�ectances of sunlit

ocean surfaces as a consequence of the stagged sensor con�guration necessitated the introduction of a

variable CSDI threshold calculated for each individual scene from the frequency distribution of the CSDI.

A visual evaluation of the scene classi�cation using 3 scenes with di�erent cloud optical thickness and

ocean re�ectance showed a high detection accuracy even in the presence of optically very thin cloud cover,

but some misclassi�cations in shaded cloud parts and in the cloud edge region as a consequence of horizontal

photon transport. Compared to the Sentinel-2 Fmask by Zhu et al. (2015), the scene classi�cation showed

similar detection accuracy. Compared to the operational Sen2Cor scene classi�cation, it showed improved

detection accuracy. In particular, the detection of cloud shadows over the dark ocean surface was improved.

However, it showed di�culties where the contrast between shaded and sunlit surface is too low. The

accuracy of the scene classi�cation meets the requirements for cloud height estimation, but requires a

preselection of the satellite images by the presence of low clouds and the absence of high cloud cover.

Application of the classi�cation to more extensive data sets will therefore require an accuracy analysis on

a broader range of marine low clouds.

The estimation of cloud base height applies the horizontal distance between a cloud object and its as-

sociated shadow object. The high variability of object shapes required the adjustment of the matching

method from a shape-based approach (Berendes et al., 1992) to an area-based approach according to Zhu

and Woodcock (2012). The cloud base height was calculated at the location of highest match similarity

between moved cloud object and associated shadow object, and the estimation of cloud base height suc-

ceeded for a large number of cloud objects. However, this matching method requires the assumption of a

vertically unextended cloud, because the vertical structure of the cumulus cloud results in an extension of

the cloud shadow along the displacement vector. Therefore, a direct comparison with ship-based ceilome-

ter measurements revealed too high values of cloud base height calculated from the matching method,

especially for deeper trade cumulus. It is argued here, correction of the overestimation is possible by sim-

plifying the object geometry and knowing the eccentricity of the paired objects. The matching methods

also show a limit in scenes with higher cloud fraction, as this causes more shadow areas to be obscured by

neighboring clouds, leading to an increase in misattribution. Cloud base height estimation at high cloud
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fractions require new estimation methods, e.g., based on the parallax of an elevated object with knowledge

of the wind speed (Frantz et al., 2018). The cloud base height of more than 20,000 analyzed cloud objects

in this work was determined to be 858m on average. The di�erences in cloud base height between the

observation days follow the data from radiosondes and surface based remote sensing instruments.

Analysis of all 9 scenes yielded a mean cloud fraction of 0.083 and a mean shadow fraction of 0.067

and showed large variability (5th to 95th percentile) of 0.02-0.19 and 0.01-0.24, respectively, within 119

subsets with a size of 27.5x27.5 km2. The determined cloud fraction and shadow fraction di�ers, because

parts of the cloud shadows are superimposed by neighboring clouds. The mean values of cloud fraction

for shallow trade cumulus scenes are consistent with previous analyses of high-resolution satellite data

(Zhao and Di Girolamo, 2007; Mieslinger et al., 2019), but cannot be compared with mean values of the

total low cloud fraction in the region because of the selection of scenes according to the presence of small-

to medium-sized cumulus clouds. Large di�erences are also presented to clear-conservative estimates of

cloud fraction as a consequence of a small shift of the seperation threshold towards cloud re�ectances (e.g

Zhao and Di Girolamo, 2006; Mieslinger et al., 2021). The relatively large width of the observation path

of both Sentinel-2 satellites o�ers the possibility to investigate on the total marine low cloud fraction in

this region in further studies.

The number-size distribution of all cloud objects were mathematically described with a double power

law. The scaling parameters were estimated using linear �ts to log-log histograms. The scaling parameters

b1 = −2.03 for smaller cloud sizes and b2 = −3.11 for larger cloud sizes were calculated using a linear

binning scheme and a cut-o� size of 7 km. The application of a logarithmic binning scheme resulted in

scaling parameters b1 = −1.88 and b2 = 3.49. The estimated scaling parameters are consitent to previous

publications. A scale break was found at a typical cloud size of 0.8 km, which is slightly higher than in

previous evaluations of high-resolution observations. Di�erences in the length of the scale break between

scenes are consistent with di�erences in cloud base height, providing support for subcloud layer height as

a physical control parameter of the scale break. For comparison with model observations, however, it must

be noted that the observation angles deviates from the zenith by up to 14°. Deep cumulus clouds thus

lead to an increase in the projected cloud area. The estimated parameters of the cloud size distribution

are also sensitive to the the �tting strategy.

Another goal of this work was to demonstrate the dependence of cloud property retrievals on detector

resolution. To achieve this, a coarse graining was used to reduce the satellite scenes to 1920m resolution

by local averaging. The scene classi�cation was applied to the scenes and distributions of total cloud

area, cloud fraction, and mean cloud re�ectance were calculated. It was shown that half of the total

cloud fraction is provided by clouds with size up to 1 km. However, the results contradict both previous

analyses of Zhao and Di Girolamo (2007) and Neggers et al. (2003) on the presence of an area-dominant

cloud size in the scale break region. Furthermore the results contradict Koren et al. (2008) on the area

dominance of smallest clouds below detector resolution, showing a largely homogeneous distribution of

the area contribution of individual cloud sizes below 500m. In contrast, a coarser detector resolution

shifts the area contributions towards a few very large cloud objects. A coarser detector resolution leads

to an increase of the cloud fraction of the whole scene by reducing the mean cloud re�ectance. However,

the sensitivity of cloud fraction and mean cloud re�ectance to the detector resolution showed di�erences

between individual scenes. It is argued here, the organisation of the clouds cause the di�erences, because it

determines how many pixels still remain above the re�ectance theshold of the cloud mask after averaging.

Since the use of di�erent cloud masks and sensor geometries can also lead to deviations of retrieved cloud

properties, this analysis shows the need to present systematic errors of the detection of cloud properties
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with lower detector resolutions in a direct comparison with GOES-16 ABI or MODIS data sets during the

campaign period in a further study. Similarly, the in�uence of the mesoscale organization of trade cumulus

on the systematic di�erences in cloud properties between high- and medium-resolution satellites as well as

geostationary satellites should be investigated in more detail, since the distribution of cumulus clouds in

the boundary layer and their mesoscale organization represent key issues in understanding shallow cumulus

cloud feedbacks (Vial et al., 2017).

In conclusion, this thesis successfully demonstrated the macrophysical properties of marine trade cumu-

lus clouds from satellite observations of the Sentinel-2 MSI. However, validation and improvement of the

analyses require comparisons with other measurement methods over longer time scales than the EUREC4A

campaign period, for which satellite data is currently only available from coastal ocean areas. Nevertheless,

the 290 km wide observation paths of both Sentinel-2 satellites allow the application of the data not only

to high-resolution observations of the spatial distribution on the micro-β to meso-β scale, but also of the

temporal evolution of trade cumulus on larger time scales. The combination of high spatial resolution

and sensor geometry also o�ers the potential of deriving other cloud properties such as the motion vector

of trade cumulus even at very small meteorological size ranges. The use of the Sentinel-2 satellite for

atmospheric observations could thus provide an additional data set for improving the understanding of

trade cumulus clouds in a warming climate.
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A. Appendix

A.1. Single cloud scenes
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Figure 13: RGB (band 12, band 8, band 4) images of the 2x2 km2 single cloud scenes which are used for

threshold adaption in section 4.1.3 and section 4.2.2
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A.2. Overview images of analyzed scenes
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Scene overview 2020-01-31

Figure 14: Cross-section of satellite path and analyzed tiles on 31-Jan-2020. (a) shows the RGB composit

(band 12, band 8 and band 4) of the scenes, (b) shows the mean re�ectance as well as the scene

classi�cation, and (c) shows the mean re�ectance and the estimated cloud base height.
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Scene overview 2020-02-02

Figure 15: Cross-section of satellite path and analyzed tiles on 02-Feb-2020. (a) shows the RGB composit

(band 12, band 8 and band 4) of the scenes, (b) shows the mean re�ectance as well as the scene

classi�cation, and (c) shows the mean re�ectance and the estimated cloud base height.
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Scene overview 2020-02-05

Figure 16: Cross-section of satellite path and analyzed tiles on 05-Feb-2020. (a) shows the RGB composit

(band 12, band 8 and band 4) of the scenes, (b) shows the mean re�ectance as well as the scene

classi�cation, and (c) shows the mean re�ectance and the estimated cloud base height.
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C. List of acronyms

ABI Advanced Baseline Imager

AOD Aerosol optical depth

ASB Spatial adaptive sliding box

ASTER Advanced Spaceborn Thermal Emission and Re�ection Radiometer

BOA Bottom of atmosphere

CBH Cloud base height

CSDI Cloud shadow detection index

ESA European Space Agency

EUREC4A Elucidating the role of clouds-circulation coupling in climate

Fmask Function of mask

GMES Global Monitoring for Enviroment and Security

GOES Geostationary Operational Enviromental Satellite

HALO High-�ying aircraft

HICO Hyperspectral Imager for the coastal ocean

ISS International Space Station

LES Large Eddy Simulation

LIDAR Light Detection and Ranging

MODIS Moderate Resolution Imaging Spectrometer

MSI Multi Spectral Imager

NIR Near-infrared

PDF Probability density function

RGB Red-green-blue image

SWIR Shortwave infrared

TOA Top of atmosphere

VIS Visible

VNIR Visible and near-infrared
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