Announcement of a topic for:

Seminar Research	
Seminar Methods	
N. (70)	

X (please mark one or more)
A Novel Analytical Framework for Advancing Brown Carbon Aerosol
Characterization
10.10.2025
Prof. Dr. Mira Pöhlker
Leibniz-Institut für Troposphärenforschung (TROPOS)
Permoserstraße 15, 04318 Leipzig
Telephone: +49 341 2717-7431
E-Mail: mira.poehlker@tropos.de
Dr. Thomas Müller
Leibniz-Institut für Troposphärenforschung (TROPOS)
Permoserstraße 15, 04318 Leipzig
Telephone: +49 341 2717-7066
E-mail: muellert@tropos.de
Dr. Arun Babu Suja
Leibniz-Institut für Troposphärenforschung (TROPOS)
Permoserstraße 15, 04318 Leipzig
Telephone: +49 341 2717-7066
E-mail: arun.babu@tropos.de
Light-absorbing aerosols such as black carbon (BC) and brown carbon
(BrC) are critical components of atmospheric particulate matter due to
their capacity to alter the Earth's radiative balance. While BC is well-
characterized as a potent absorber across the near-ultraviolet, visible, and
near-infrared wavelengths, BrC optical properties remain poorly
characterized. BrC is a complex and chemically diverse subset of organic
aerosols, primarily absorbing in the UV and short visible wavelengths.
Despite growing recognition of its climatic significance, BrC is still
poorly represented in field observations and Earth system models, largely
due to challenges in its measurement, classification and large regional
variabilities. The key objectives of this study are: (1) Reassess the
wavelength-dependent BrC absorption and constrain its uncertainties by
using a combination of novel and traditional online and offline
techniques, including a newly developed dual-wavelength (405 nm and
658 nm) OC-EC analyzer, a UV-Vis spectrophotometer, and multi-
wavelength filter-based absorption photometers. (2) Evaluate the thermogram-based BrC identification: analyze OC-EC thermograms to
trace the evolution of BrC absorption across different thermal steps.
1. Massabò et al., Two-wavelength thermal-optical determination of
light-absorbing carbon in atmospheric aerosols, Atmos. Meas. Tech., 12,
3173–3182, 2019. doi.org/10.5194/amt-12-3173-2019.
2. Sun et al., Single-particle volatility and implications for brown carbon
absorption in Beijing, China. Science of the Total Environment, 854,
2023. dx.doi.org/10.1016/j.scitotenv.2022.158874.
3. Arun et al. Enhanced light absorption by ambient brown
carbon aerosols in the eastern Himalayas. Environ. Sci.: Atmos. 2024.