Charakterisierung physikalischer Aerosoleigenschaften

Die von TROPOS betriebene Forschungsstation in Melpitz dient zur Charakterisierung der Luftzusammensetzung im regional zentral-europäischen Raum

Melpitz ist eine der Schwerpunktstationen in Europa zur Bestimmung physikalischer und chemischer Aerosol-Partikeleigenschaften, so auch als Teil mehrerer Messnetze und Infrastrukturprojekte (GAW - Global Atmosphere WatchEMEP, ACTRIS und GUAN - German Ultrafine Aerosol Network).

Die Daten sind frei verfügbar und stehen für wissenschaftliche und behördliche Anwendungen zur Verfügung.

Atmosphärische Partikelneubildung in Melpitz, TDMPS-Messung vom 19.5.2012. Quelle: Ma/TROPOS.

Forschungsthemen

  • Lichtstreu- und Absorptionseigenschaften von Aerosolpartikeln in Zentraleuropa
  • Luftqualität und Ruß in Mitteldeutschland
  • Transport von Aerosolenpartikeln über lange Distanzen
  • Klimatologie des Grenzschichtaerosols
  • Partikelneubildung und -wachstum aus Vorläufergasen

Kontinuierliche Aerosolmessungen

Parameter | Instrument | Anmerkungen
Partikelanzahl-Größenverteilung | Mobilitäts-Partikelgrößenspektrometer; Type TROPOS-TSMPS | Größenbereich 3-800 nm (Mobilität)
Partikelanzahl-Größenverteilung (nichtflüchtig) | Mobilitäts-Partikelgrößenspektrometer; Type TROPOS-TSMPS + Thermodenuder | Größenbereich 3-800 nm (Mobilität)
Partikelanzahl-Größenverteilung | aerodynamisches Partikelgrößenspektrometer; Type TSI-APS 3321 | Größenbereich 0,8-10 µm (aerodynamisch)
Partikel-Lichtstreukoeffizient | Integrierendes Nephelometer; Typ-TSI 3563 | 3 Wellenlängen (450, 550, 700 nm)
Partikel-Lichtabsorptionskoeffizient und Ruß-Massenkonzentration | Absorptionsphotometer; Type Thermo-Scientific-MAAP | 1 Wellenlänge (637 nm)
Konzentration von Wolkenkondensationpartikeln | Wolkenkondensations-Partikelzähler; Type DMT-CCNC | größenaufgelöst nach DMA
Massenkonzentration volatiler anorganischer und organischer Aerosolkomponenten | Massenspektrometer; Type Aerodyne-ACSM | submikroner Größenbereich

Ausgewählte Literatur

Aerosolabsorption:

Nordmann, S., W. Birmili, K. Weinhold, K. Müller, G. Spindler, and A. Wiedensohler: Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res. Atmos., 118, 12075–12085, doi:10.1002/2013JD020021, 2013.

Partikelneubildung:

Paasonen, P., Asmi, A., Petäjä, T., Kajos, M.K. Aijala, M. et al.: Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geosci., 6, 438-442, 2013.

Hamed, A., Birmili, W., Joutsensaari, J., Mikkonen, S., Asmi, A. et al.: Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006, Atmos. Chem. Phys., 10, 1071-1091, 2010. Download from ACP

Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S. et al.: EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events, Atmos. Chem. Phys., 10, 7907-7927, 2010.

Langzeittrends:

Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A. et al.: Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys., 13, 895-916, 2013.

Asmi, A., Wiedensohler, A., Laj, P. et al.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505‐5538, 2011.

Romakkaniemi, S., A. Arola, H. Kokkola, W. Birmili, T. Tuch, V.-M. Kerminen, P. Räisänen, J. N. Smith, H. Korhonen, and A. Laaksonen: Effect of aerosol size distribution changes on AOD, CCN and cloud droplet concentration: Case studies from Erfurt and Melpitz, Germany, J. Geophys. Res., 117, D07202, doi:10.1029/2011JD017091, 2012.

Engler, C., Rose, D., Wehner, B., Wiedensohler, A., Brüggemann, E. et al.: Size distributions of non-volatile particle residuals (Dp < 800 nm) at a rural site in Germany and relation to air mass origin. Atmos. Chem. Phys. 7: 5785-5802, 2007. Download from ACP

Staubwolke aus der Ukraine:

Birmili, W., Schepanski, K., Ansmann, A., Spindler, G., Tegen, I., Wehner, B. et al.: A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine, Atmos. Chem. Phys., 8, 997-1016, 2008. Download from ACP

Modellvalidierung:

Pietikäinen, J.-P., O'Donnell, D., Teichmann, C., Karstens, U., Pfeifer, S., Kazil, J., Podzun, R., Fiedler, S., Kokkola, H., Birmili, W., O'Dowd, C., Baltensperger, U., Weingartner, E., Gehrig, R., Spindler, G., Kulmala, M., Feichter, J., Jacob, D., and Laaksonen, A.: The regional aerosol-climate model REMO-HAM, Geosci. Model Dev., 5, 1323-1339, 2012.

Mikkonen, S., Korhonen, H., Romakkaniemi, S., Smith, J. N., Joutsensaari, J. et al.: Meteorological and trace gas factors affecting the number concentration of atmospheric Aitken (Dp = 50 nm) particles in the continental boundary layer: parameterization using a multivariate mixed effects model, Geosci. Model Dev., 4, 1-13, 2011.

Reddington, C. L., Carslaw, K. S., Spracklen, D. V., Frontoso, M. G., Collins, L. et al.: Primary versus secondary contributions to particle number concentrations in the European boundary layer, Atmos. Chem. Phys., 11, 12007-12036, 2011.

Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S. et al.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775‐4793, 2010.

Kontakt