Wolkenbildung mit Zutaten aus dem Wald

Leipzig, 16.05.2014

Unter der Leitung von Forschern des Paul Scherrer Instituts durchgeführte Studie wurde am 16. Mai 2014 im Wissenschaftsmagazin Science veröffentlicht.

 

 

Genf. Wissenschaftler wissen, dass Wolken in der Bilanz einen kühlenden Beitrag auf das Klima unseres Planeten leisten. Dennoch ist das Ausmaß dieses kühlenden Effekts nicht genau bekannt. Ebenfalls unklar ist, wie sich der Effekt der Wolken auf das globale Klima verändern würde, wenn der derzeitige Trend zur Erwärmung sich in Zukunft fortsetzen sollte. Tatsächlich hat der letzte Bericht des UN-Klimarats IPCC wieder einmal auf die Wolken als größte Quelle von Ungewissheiten in aktuellen Klimamodellen hingewiesen. Eine neue Studie vom CLOUD-Experiment (Cosmics Leaving OUtdoor Droplets) am CERN wirft nun Licht auf den allerersten Schritt im Prozess der Wolkenbildung. Die Arbeit stellt somit einen wichtigen Beitrag zum besseren Verständnis der Verbindung zwischen Wolken und Klima dar. Die unter der Leitung von Forschern des Paul Scherrer Instituts durchgeführte Studie wurde am 16. Mai 2014 im Wissenschaftsmagazin Science veröffentlicht. An der Studie waren auch zwei KollegInnen des TROPOS beteiligt.

 

Die Ungewissheiten bezüglich der Auswirkung von Wolken auf das Klima rühren zum grossen Teil von der Komplexität der Wolkenbildung her. Wolkentröpfchen entstehen, wenn Wasserdampf in der Atmosphäre kondensiert, doch der Vorgang kommt nicht ohne die Hilfe von Wolkenkondensationskeimen aus. So bezeichnen Wissenschaftler die festen oder flüssigen Partikel, an denen Wasserdampf haften muss, damit es kondensieren und somit ein Wolkentröpfchen bilden kann. Diese Partikel können direkt von natürlichen Quellen oder durch menschliche Aktivitäten emittiert werden. Die meisten von ihnen entstehen aber erst in der Atmosphäre durch die Umwandlung von Stoffen, die ursprünglich als Gase emittiert worden sind.

 

Gerade diese Umwandlung von Gasen in feste oder flüssige Partikel – von Wissenschaftlern Nukleation genannt– ist der erste Schritt bei der Entstehung der meisten Wolken. Und sie ist auch die erste Quelle von offenen Fragen. Die Wissenschaftler wissen noch nicht, welche Zutaten nötig sind, damit die Partikel stabil und gross genug werden, so dass sie als Wolkenkeime dienen können. Die neue Studie bringt gerade eine solche für das lang gesuchte Rezept der Wolkenbildung erforderliche Zutat ans Licht.

 

Schwefelsäure allein genügt nicht

Auf dem Weg zur Aufklärung des Wolkenbildungsrätsels sind Forschende bereits zuvor auf eine wichtige Zutat gestoßen: Schwefelsäure. Deren Konzentration korreliert nämlich häufig mit der Nukleationsrate, d.h. der Schnelligkeit, mit der neue Partikel in der Atmosphäre gebildet werden. Dennoch scheint Schwefelsäure nur ein Puzzleteil zu sein. Das zeigen die bisher erfolglosen Bemühungen, die gemessenen Nukleationsraten allein als Folge der Konzentration von Schwefelsäure zu erklären.

 

Schwefelsäure weist einen niedrigen Dampfdruck auf, d.h. sie verdampft nur schwer – und genau darin liegt der Grund für die zentrale Rolle von Schwefelsäure bei der Nukleation. Einzelne Moleküle können nur dann neue Partikel bilden, wenn sie zu Clustern verklumpen, die stabil genug sind, dass sie nicht mehr leicht auseinanderfallen, also nicht mehr „verdampfen“. Cluster sind Molekülhaufen, die kleiner als etwa 2 Nanometer sind. Aber es stellt sich heraus, dass selbst die „klebrigen“ Schwefelsäuremoleküle einen zusätzlichen Kitt benötigen, damit die Cluster zusammenhalten.

 

Der neue Kitt aus dem Wald

Die neue Studie zeigt nun, wie das Kitten funktioniert. Die Studienautoren beobachteten, dass Cluster von Schwefelsäuremolekülen stabiler gegenüber der Verdampfung werden und somit grösser werden und schließlich neue Partikel bilden, wenn in den Clustern gewisse hochoxidierte organische Moleküle eingebaut sind. Diese sind biologischen Ursprungs und kommen in der Atmosphäre nur in extrem kleinen Konzentrationen vor. Die Wissenschaftler konnten zeigen, dass diese hochoxidierten Moleküle in der Atmosphäre aus alpha-Pinen, einem der Moleküle, die Pinienwäldern ihren typischen Duft verleihen, gebildet werden. alpha-Pinen wird von den Bäumen vor allem während der warmen Jahreszeit emittiert.

 

Der Nachweis erfolgte auf zwei Arten. Erstens experimentell: Aus präzisen massenspektrometrischen Messungen konnten sie folgern, dass sowohl Schwefelsäure als auch die organischen Oxide in den Clustern vorhanden waren. Der zweite Hinweis kam aus der Theorie: genaue quantenmechanische Berechnungen zeigten nämlich, dass gemischte Cluster, also Cluster aus verschiedenen Bestandteilen, in der Tat weniger leicht verdampfen als Cluster, die nur aus Schwefelsäure bestehen. Solche Cluster halten länger zusammen, somit wird die Wahrscheinlichkeit grösser, dass aus ihnen neue Partikel werden.

 

Ionen spielen eine weniger wichtige Rolle

Die Wissenschaftler untersuchten auch eine alternative Route. Es galt zu prüfen, ob elektrisch geladene Moleküle (Ionen)einen stärkeren Kitt bilden und die Cluster stabiler werden und somit mehr Partikel bilden können. Deshalb wollten die Forschenden wissen, inwiefern Ionen von Schwefelsäure oder alpha-Pinenoxiden , die in der Atmosphäre in geringen Konzentrationen durch die kosmische Strahlung entstehen, ebenfalls zur Nukleation beitragen. Das Ergebnis: Ionen tragen wesentlich zur Bildung neuer Partikel bei, aber nur, wenn die Konzentrationen von Schwefelsäure und organischen Oxiden in der Atmosphäre sehr niedrig sind. Das heisst: organische Oxide und Ionen erhöhen beide die Stabilität von Clustern aus Schwefelsäure, aber die neutralen organischen Oxide fallen stärker ins Gewicht, wenn ihre Konzentration und die von Schwefelsäure einen gewissen Schwellenwert überschreiten.

 

Bessere Modellvorhersagen

Nachdem sie den neuen Mechanismus der Partikelbildung eruiert hatten, machten sich die Forscher daran, diesen Mechanismus in ein globales Modell der Aerosolbildung einzubauen. Sie wollten testen, ob der neue Mechanismus die Wirklichkeit in Sachen Partikelbildung und deren saisonale Schwankungen wiedergeben kann. Und in der Tat: als sie die stabilisierende Wirkung der organischen Oxide berücksichtigten, konnte das Modell die gemessenen Nukleationsraten genauer vorhersagen. Die Übereinstimmung von Modellvorhersagen und Feldmessungen galt auch für die saisonalen Schwankungen: das Modell konnte das typische Auf und Ab der Nukleation im Verlauf eines Jahres korrekt vorhersagen. Dieser Test bestätigt, dass Emissionen aus dem Wald tatsächlich einen wichtigen Einfluss auf den ersten Schritt im Prozess der Wolkenbildung nehmen. Er deutet auch darauf hin, dass die neue Arbeit diesen Einfluss korrekt modelliert haben dürfte.

 

Schulterschluss von Experimentatoren und Modellierern

Urs Baltensperger, Leiter des Labors für Atmosphärenchemie am PSI bezeichnet die neuen Ergebnisse als einen wichtigen Schritt zum tieferen Verständnis der Nukleation, dem Prozess, der am Ursprung der Wolkenbildung steht. Er betont aber, dass die so gebildeten Partikel nach der Nukleation noch bis zu einer Grösse von 50 bis 100 Nanometer heranwachsen müssen, um Wolkenkeime bilden zu können. Die neue Studie hat sich nicht mit dieser Wachstumsphase befasst, so dass es verfrüht wäre, zu behaupten, man habe die Wolkenbildung als Ganzes verstanden. Zudem haben die nun durchgeführten Experimente zwar unter typischen atmosphärischen Bedingungen stattgefunden. Aber man hat nicht alle möglichen meteorologischen Rahmenbedingungen abdecken können.

 

Baltensperger unterstreicht jedoch die Bedeutung von Experimenten unter genau kontrollierten Bedingungen, wie sie jetzt in der CLOUD-Kammer gemacht wurden. „Mit CLOUD können wir die Konzentrationen der an der Nukleation beteiligten Substanzen nach Wunsch ändern und dann die entsprechenden Änderungen der Nukleationsrate sehr präzise messen. Auch Parameter wie Temperatur, Druck und Luftfeuchtigkeit können nach Belieben eingestellt werden. Eine solche Kontrolle über die Umgebungsbedingungen ist bei Feldmessungen praktisch unmöglich.“ Genauso wichtig wie die Versuchsbedingungen, fügt er hinzu, ist die Beteiligung der Modellierungsexperten bereits in der Planungsphase der Experimente. „Ohne die Hilfe von Spezialisten, die die theoretischen Modelle aufstellen, hätten wir es viel schwerer, aus den Experimenten relevante Antworten auf unsere Fragen herauszubekommen. Und wir könnten kaum unsere Messergebnisse in Modellvorhersagen übersetzen.“

 

Text: Paul Scherrer Institut/Leonid Leiva

http://www.psi.ch/media/wolkenbildung-mit-zutaten-aus-dem-wald#

 

 

Kontakt / Ansprechpartner:

Prof. Dr. Urs Baltensperger, Leiter des Labors für Atmosphärenchemie, Paul Scherrer Institut, Telefon: +41 56 310 24 08, http://www.psi.ch/lac/urs-baltensperger

 

 

Originalveröffentlichung:

Francesco Riccobono, Siegfried Schobesberger, Catherine E. Scott,  Josef Dommen, Ismael K. Ortega, Linda Rondo, João Almeida, Antonio Amorim, Federico Bianchi, Martin Breitenlechner, André David, Andrew Downard, Eimear M. Dunne, Jonathan Duplissy,  Sebastian Ehrhart, Richard C. Flagan, Alessandro Franchin, Armin Hansel,  Heikki Junninen, Maija Kajos,  Helmi Keskinen,  Agnieszka Kupc, 
Andreas Kürten,  Alexander N. Kvashin,  Ari Laaksonen, Katrianne Lehtipalo, Vladimir Makhmutov,  Serge Mathot, Tuomo Nieminen,  Antti Onnela, Tuukka Petäjä,  Arnaud P. Praplan,  Filipe D. Santos, Simon Schallhart, John H. Seinfeld,  Mikko Sipilä,  Dominick V. Spracklen, Yuri Stozhkov,  Frank Stratmann,  Antonio Tomé, Georgios Tsagkogeorgas,  Petri Vaattovaara, Yrjo Viisanen, Aron Vrtala, Paul E. Wagner, Ernest Weingartner,  Heike Wex, Daniela Wimmer,  Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Jasper Kirkby, Markku Kulmala,  Douglas R. Worsnop, Urs Baltensperger  (2014): Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 16 Mai 2014.

DOI: http://dx.doi.org/10.1126/science.1243527

Francesco Riccobono und Urs Baltensperger an der CLOUD-Kammer. Bild: CERN

Francesco Riccobono und Urs Baltensperger an der CLOUD-Kammer. Bild: CERN

Die drei Doktoranden Francesco Riccobono, Arnaud Praplan und Federico Bianchi (von links) diskutieren ein CLOUD-Resultat am Bildschirm. Bild: CERN

Die drei Doktoranden Francesco Riccobono, Arnaud Praplan und Federico Bianchi (von links) diskutieren ein CLOUD-Resultat am Bildschirm. Bild: CERN