Aerosol-Cloud Interaction

Process Studies on Small Spacial and Temporal Scales

Basic process understanding and a sufficient data basis on the interaction between aerosols, clouds and radiation are essential for the improvement of future weather and climate predictions. We investigate the effect of activation and freezing processes and turbulent mixing processes on the microphysical and radiative properties of clouds as well as on cloud extend and their life cycle. 

Chemical multiphase processes in clouds, fog and mist modify the chemical composition and thus the physical properties of tropospheric aerosols on all scales up to the global scale. In order to quantify their environmental relevance and to project their effects in coupled chemistry transport models in an adequate form, detailed and combined laboratory-, field-, and modelling process studies are essential.

Aerosol and clouds - microphysical interactions

IPCC AR4 Strahlungsbilanz
Radiation Budget

Investigation of the budget of solar and terrestrial radiation at the ground and the top of the atmosphere.

Dynamics, turbulence and their influence on cloud processes

Microphysics in a Turbulent Channel

Since the beginning of 2017, the "Turbulent Leipzig Aerosol Cloud Interaction Simulator" (LACIS-T) is available for the examination of the influence of turbulence on aerosol cloud interactions.

LES cloud modeling

Highly resolved cloud simulations, in combination with in-situ measurements and remote sensing data contribute to the understanding of interaction processes in the atmospheric boundary layer.

Einfluss von Inseln auf atmosphärische Strömungsmuster und Wolkenbildung mittels moderner Messverfahren und numerischer Modellierung.
Island effects

Island influence on atmospheric flow patterns und cloud generation with modern measuring methods and numerical modeling.