Dr. Fabian Senf

Leibniz Institute for

Troposheric Research

Permoserstraße 15

04318 Leipzig


Telephone: +49 341 2717-7170

Mail: senf@tropos.de  

Room: 120 (Building 23.1)



Scientific staff



Modeling of Atmospheric Processes


Research areas & research interests

  • cloud microphysics and cloud-radiative effects
  • early detection and growth of convective clouds / thunderstorms with Meteosat-SEVIRI
  • verification of thunderstorm forecasts from regional convection-permitting models (e.g. COSMO-DE), object-based verification
  • organization of deep convective clouds in Central Europe and in the tropical Atlantic and its climate impacts
  • quantification of uncertainties in synthetic satellite images and derived satellite products like cloud type, cloud-top height or motion


Current projects

  • tobac (since 2019), internal project to support development of a Python software for "Tracking and Object-based Analysis of Clouds"
  • PolarCAP (since 2022) as part of DFG SPP PROM II, "Polarimetric Radar Signatures of Ice Formation Pathways from Controlled Aerosol Perturbations"
  • IFCES2 (since 2022) as part of BMBF SCALEXA, "With Intra-model Functional Concurrency towards Efficient Exascale Earth System Predictions"
  • WiFiSmoke (since 2023), funded by Leibniz Science Campus “Smoke and Bioaerosol in a changing climate”
  • CleanCloud (since 2024), funded by EU, "Clouds and climate transitioning to post-fossil aerosol regime"; Cluster 2: "Convective systems and extreme weather"
  • C3SAR (since 2024), DFG RU project P1 "Modelling cloud micro- and macrophysical properties and their radiative effects"


Completed projects

  • CAWSES - SOLTIVAR, (2007-2011) Interaction between gravity waves and solar tides in the middle atmosphere
  • HErZ- OASE, (2011-2015) Hans Ertel Centre for Weather Research: Branch 1: Atmospheric Dynamics and Predictability. Project: "Object-based analysis and seamless prediction"
  • Coorperation with the German Weather Service: "Improving the Convective Initiation Detection with the help of the Berendes cloud mask"
  •  HD(CP)2 Phase II (2016-2019) "Convective Organization observed by Satellite and simulated by Models"
  •  HD(CP)2 Phase II (2019) "Revised Aerosol Representation in ICON-LES and Cloud Adjustments to Aerosol Absorption"
  • Co-PI EMF-DWD INCITES (since 2016) "Improved Nowcasting of Convective Initiation Thunderstorms with METEOSAT SEVIRI"





under review

  • Quaas et al.  incl. F. Senf (2024) . Adjustments to climate perturbations -- mechanisms, implications, observational constraints, AGU Advances, under review.


  • Freeman, S. W., Brunner, K., Jones, W. K., Kukulies, J., Senf, F., Stier, P., & van den Heever, S. C. (2024). Advancing Our Understanding of Cloud Processes and Their Role in the Earth System through Cloud Object Tracking. Bull. Amer. Meteorol. Soc., 105(1), E297 – E299. https://doi.org/10.1175/BAMS-D-23-0204.1

  • Lee, J., Seifert, P., Hashino, T., Maahn, M., Senf, F., & Knoth, O. (2023). Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars. EGUsphere, 2023, 1–28. https://doi.org/10.5194/egusphere-2023-1887, accepted

  • Sokolowsky, G. A., Freeman, S. W., Jones, W., Kukulies, J., Senf, F., Marinescu, P. J., Heikenfeld, M., Brunner, K., Bruning, E., Collis, S., Jackson, R., Leung, G., Pfeifer, N., Raut, B., Saleeby, S., Stier, P., & van den Heever, S. C. (2023). tobac v1.5: Introducing Fast 3D Tracking, Splits and Mergers, and Other Enhancements for Identifying and Analysing Meteorological Phenomena, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1722, accepted.


  • Senf, F., B. Heinold, A. Kubin, J. Müller, R. Schrödner, and I. Tegen, (2023). How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments, Atmos. Chem. Phys., 23, 8939–8958, https://doi.org/10.5194/acp-23-8939-2023

  • Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., & Senf, F. (2023). Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations. Atmos. Chem. Phys., 23(4), 2901–2925. https://doi.org/10.5194/acp-23-2901-2023


  • Heinold, B., Baars, H., Barja, B., Christensen, M., Kubin, A., Ohneiser, K., Schepanski, K., Schutgens, N., Senf, F., Schrödner, R., Villanueva, D., & Tegen, I. (2022). Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires. Atmos. Chem. Phys., 22(15), 9969–9985. https://doi.org/10.5194/acp-22-9969-2022


  • Senf, F., Quaas, J. & Tegen, I.(2021) Absorbing aerosol decreases cloud cover in cloud-resolving simulations over Germany. Q J R Meteorol Soc, 1– 18. Available from: https://doi.org/10.1002/qj.4169

  • Deneke, H. et al. incl. F. Senf (2021), Increasing the Spatial Resolution of Cloud Property Retrievals from Meteosat SEVIRI by Use of its High-Resolution Visible Channel: Implementation and Examples, Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021

  • Villanueva, D., Senf, F., and Tegen, I. (2021). Hemispheric and seasonal contrast in cloud thermodynamic phase from A‐Train spaceborne instruments.  J. Geophys. Res. Atmos., 126, e2020JD034322. https://doi.org/10.1029/2020JD034322


  • Sakradzija, M., F. Senf, L. Scheck, M. Ahlgrimm, and D. Klocke (2020), Local Impact of Stochastic Shallow Convection on Clouds and Precipitation in the Tropical Atlantic,” Mon. Weather Rev., 148, 5041-5062. doi: 10.1175/MWR-D-20-0107.1.
  • Senf, F., A. Voigt, N. Clerbaux, A. Hünerbein, and H. Deneke (2020), Increasing Resolution and Resolving Convection Improve the Simulation of Cloud-Radiative Effects Over the North Atlantic, J. Geophys. Res. Atmos., 125(19), e2020JD032667, doi:10.1029/2020JD032667.
  • van Pinxteren, M. et al.  incl. F. Senf (2020), Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign, Atmos. Chem. Phys., 20(11), 6921–6951, doi:10.5194/acp-20-6921-2020.
  • Costa-Surós, M. et al. incl. F. Senf (2020), Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with ICON, Atmos. Chem. Phys., 20(9), 5657–5678.
  • Stevens, Bjorn et al. incl. Senf, F. (2020), Large-eddy and Storm Resolving Models for Climate Prediction The Added Value for Clouds and Precipitation, J. Meteor. Soc. Japan, doi:10.2151/jmsj.2020-021.


  • Heikenfeld, M., P. J. Marinescu, M. Christensen, D. Watson-Parris, F. Senf, S. C. van den Heever, and P. Stier (2019), tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12(11), 4551–4570.
  • Senf, F., M. Brueck, and D. Klocke, (2019), Pair Correlations and Spatial Statistics of Deep Convection over the Tropical Atlantic. J. Atmos. Sci., 76, 3211–3228.
  • Pscheidt, I., F. Senf, R. Heinze, S. Trömel, H. Deneke, and C. Hohenegger (2019), How Organized is Deep Convection over Germany?, Quart. J. Roy. Meteor. Soc., 145, 2366–2384


  • Weger, M.; Heinold, B.; Tegen, I.; Engler, C.; Seifert, P.; Baars, H.; Senf, F.; Hoose, C.; Ullrich, R.; Seifert, A.; Blahak, U.; Krämer, M.; Schumann, U.; Voigt, C. & Borrmann, S. (2018) The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe, Atmos. Chem. Phys., 18, 17545–17572.
  • Heintzenberg, J., F. Senf, W. Birmili, and A. Wiedensohler (2018), Aerosol connections between three distant continental stations, Atmos. Environ., 190, 349–358.
  • Senf, F., D. Klocke, and M. Brueck (2018), Size-Resolved Evaluation of Simulated Deep Tropical Convection, Mon. Wea. Rev., 146(7), 2161–2182.


  • Ansmann, A., Rittmeister, F., Engelmann, R., Basart, S., Jorba, O., Spyrou, C., Remy, S., Skupin, A., Baars, H., Seifert, P., Senf, F., and Kanitz, T. (2017) Profiling of Saharan dust from the Caribbean to western Africa – Part 2: Shipborne lidar measurements versus forecasts, Atmos. Chem. Phys., 17, 14987-15006.
  • Rempel, M., F. Senf, and H. Deneke (2017), Object-based metrics for forecast verification of convective development with geostationary satellite data, Mon. Wea. Rev.,  145(8), 3161–3178. [pdf]
  • Bley, S., H. Deneke, F. Senf, and L. Schenk (2017), Metrics for the evaluation of warm convective cloud fields in a large eddy simulation with Meteosat images, Quart. J. Roy. Meteor. Soc., 143(705), 2050–2060. [pdf]
  • Senf, F. and Deneke, H., (2017): Satellite-based characterization of convective growth and glaciation properties in relation to precipitation formation over Central Europe. J. Appl. Meteor. Climatol., 56, 1827–1845.[pdf]
  • Heinze, R., Dipankar, A., Carbajal Henken, C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zängl, G., Zhang, D. and Quaas, J., (2017): Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69–100. [pdf]
  • Achatz, U., Ribstein, B., Senf, F. and Klein, R., (2017): The interaction between synoptic-scale balanced flow and a mesoscale wave field throughout the whole atmosphere: Weak and moderately strong stratification. Quart. J. Roy. Meteor. Soc., 143, 342–361. [pdf]
  • Senf, F. and Deneke, H. (2017): Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics, Atmos.Res., 183, 113-129. [pdf]


  • Bley, S., Deneke, H. and Senf, F. (2016): Meteosat-Based Characterization of the Spatio-Temporal Evolution of Warm Convective Cloud Fields over Central Europe, J. Appl. Meteor. Climatol., 55, 2181-2195. [pdf]


  • Ribstein, B., Achatz, U. and Senf, F., (2015): The interaction between Gravity Waves and Solar Tides: Results from 4D Ray Tracing coupled to a Linear Tidal Model. J. Geophys. Res., 120, 6795–6817.[pdf]
  • Seifert, P., Kunz, C., Baars, H., Ansmann, A., Bühl, J., Senf, F., Engelmann, R., Althausen, D. and Artaxo, P., (2015): Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin. Geophys. Res. Lett., 42, 5587–5593.[pdf]
  • Wapler, K., Harnisch, F., Pardowitz, T. and Senf, F., (2015): Characterisation and predictability of a strong and a weak forcing severe convective event - a multi-data approach. Meteor. Z., 24, 393-410. [pdf]
  • Senf, F., Dietzsch, F., Hünerbein A. and Deneke, H., (2015): Characterization of initiation and growth of selected severe convective storms over Central Europe with MSG-SEVIRI. J. Appl. Meteor. Climatol., 54, p. 207-224. [pdf]

2009 - 2012

  • Achatz, U., Senf, F. and Grieger, N., F.-J. Lübken (Ed.) (2012): Solar tides in the middle atmosphere: Interactions with the zonal- mean flow, planetary waves and gravity waves. in Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a priority program, Springer Verlag.[pdf]
  • Senf, F. and Achatz, U., (2011), On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110. [pdf]
  • Achatz, U., Klein, R. and Senf, F., (2010), Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120-147. [pdf]
  • Senf, F., Altrock, P. M., and Behn, U., (2009), Nonequilibrium phase transitions in finite arrays of globallycoupled Stratonovich models: strong coupling limit, New J. Phys. 11,  063010. [pdf]



  • Senf, F., J. Quaas, and I. Tegen, (2021) Absorbing aerosol decreases cloud cover in cloud-resolving simulations over Germany. Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10505373.2

  • Senf, F., A. Voigt, N. Clerbaux, H. M. Deneke, and A. Hünerbein (2020), Increasing resolution and resolving convection improves the simulation of cloud-radiative effects over the North Atlantic, Earth and Space Science Open Archive, 34, https://doi.org/10.1002/essoar.10502408.2


Software & Data


  • tobac Community, Brunner, K., Freeman, S. W., Jones, W. K., Kukulies, J., Senf, F., Bruning, E., Stier, P., van den Heever, S. C., Heikenfeld, M., Marinescu, P. J., Collis, S. M., Lettl, K., Pfeifer, N., Raut, B. A., & Zhang, X. (2024). tobac - Tracking and Object-based Analysis of Clouds (v1.5.3). Zenodo. https://doi.org/10.5281/zenodo.10863405


  • Fabian Senf. (2023). Jupyter Notebooks for Plotting and Analysis of the "Circulation Responses for WiFi-AUS" study, Revision1 Release (v1.2_revision1). Zenodo. https://doi.org/10.5281/zenodo.7957666

  • Fabian Senf, Bernd Heinold, Anne Kubin, Jason Müller, Roland Schrödner, & Ina Tegen. (2023). Dataset associated with Senf et al. (2023): "How the extreme 2019-2020 Australian wildfire affected global circulation and adjustments" (v1.0.submission) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7568466

  • Fabian Senf. (2023). An Illustrative Example for Cloud-Radiation Coupling in ICON-LEM v2.6.5 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.7780733

  • Fabian Senf, Bernd Heinold, Ina Tegen, & Diego Villanueva. (2023, August 25). Course Material for "ComputerLab - Atmospheric models: Scales and Parameterizations", University Leipzig. Zenodo. https://doi.org/10.5281/zenodo.8282872

  • tobac Community, Brunner, Kelcy, Freeman, Sean W., Jones, William K., Kukulies, Julia, Senf, Fabian, Bruning, Eric, Stier, Philip, van den Heever, Sue C., Heikenfeld, Max, Marinescu, Peter J., Collis, Scott M., Lettl, Kolya, Pfeifer, Nils, Raut, Bhupendra A., Zhang, Xin, & Sokolowsky, G. Alex. (2023). tobac - Tracking and Object-based Analysis of Clouds (v1.5.0). Zenodo. https://doi.org/10.5281/zenodo.8164675

  • tobac Community, Brunner, K., Freeman, S. W., Jones, W. K., Kukulies, J., Senf, F., Bruning, E., Stier, P., van den Heever, S. C., Heikenfeld, M., Marinescu, P. J., Collis, S. M., Lettl, K., Pfeifer, N., Raut, B. A., & Zhang, X. (2023). tobac - Tracking and Object-based Analysis of Clouds (v1.5.1). Zenodo. https://doi.org/10.5281/zenodo.8375128
  • tobac Community, Brunner, K., Freeman, S. W., Jones, W. K., Kukulies, J., Senf, F., Bruning, E., Stier, P., van den Heever, S. C., Heikenfeld, M., Marinescu, P. J., Collis, S. M., Lettl, K., Pfeifer, N., Raut, B. A., & Zhang, X. (2023). tobac - Tracking and Object-based Analysis of Clouds (v1.5.2). Zenodo. https://doi.org/10.5281/zenodo.10310016


  • Max Heikenfeld, Sean Freeman, William Jones, Julia Kukulies, Fabian Senf, Nils Pfeifer, & galexsky. (2022). tobac-project/tobac: tobac 1.3.3 (v1.3.3). Zenodo. https://doi.org/10.5281/zenodo.7062841