Chemistry-Transport Model System COSMO-MUSCAT

Fig. 1: Model simulation of clouds (white), wind fields (red lines), dust emissions (yellow) and anthropogenic emissions (grey). Source: Bernd Heinold/TROPOS

The modeling department of the TROPOS has developed the state-of-the-art multi-scale model system COSMO-MUSCAT (Wolke et al., 2004, 2012). It is qualified for process studies as well as the operational forecast of pollutants in local and regional areas (Heinold et al., 2007; Hinneburg et al., 2009; Renner und Wolke, 2010). The model system consists of two online coupled codes. The operational forecast model COSMO is a non-hydrostatic and compressible meteorological model and solves the governing equations on the basis of a terrain-following grid (Doms and Schättler, 1999; Baldauf et al., 2011). Driven by the meteorological model, the chemistry transport model MUSCAT (Multi-Scale Chemistry Aerosol Transport) treats the atmospheric transport as well as chemical transformations for several gas phase species and particle populations (Knoth and Wolke, 1998; Stern et al., 2008). The transport processes include advection, turbulent diffusion, sedimentation, dry and wet deposition.

The modelling system is used for several air quality applications (e.g., Wolke et al., 2012) and the investigation of the large-scale transport of Saharan dust, including its sources and sinks (e.g., Heinold et al., 2007, 2011). The simulation results were evaluated by measurements and satellite data within the framework of the project SAMUM. In addition to parameterizing dust particle fluxes, the influence of dust by modifying solar and thermal radiative fluxes on temperature, wind fields, and cloud dynamics is estimated (Helmert et al., 2007). Furthermore, Saharan dust export to the North Atlantic is quantified, where nutrient input by dust is suspected to enhance marine productivity. The performance of the modeling system was evaluated in several model intercomparison studies, e. g. in the framework of AQMEII (Solazzo et al., 2012 a, b).

References

Knoth and Wolke (1998) Knoth, O. and R. Wolke, 1998a, An explicit-implicit numerical approach for atmospheric chemistry-transport modelling, Atmos. Env. 32, 1785-1797, doi: 10.1016/S1352-2310%2897%2900476-7.

Doms, G. and U. Schättler, 1999, The Nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD: Part I: ScientificDocumentation (Version LM-F90 1.35), Deutscher Wetterdienst, Offenbach, 1999.

Baldauf et al. (2011) Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, T. Reinhardt, 2011, Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Monthly Weather Review, DOI: 10.1175/MWR-D-10-05013.1.

Wolke et al. (2004) Wolke, R.,  O. Knoth, O. Hellmuth, W. Schröder and E. Renner, 2004a, The parallel model system LM-MUSCAT for chemistry-transport simulations: Coupling scheme, parallelization and application, in: G.R. Joubert, W.E. Nagel, F.J. Peters, and W.V. Walter, Eds., Parallel Computing: Software Technology, Algorithms, Architectures, and Applications, Elsevier, Amsterdam, The Netherlands, 363-370, doi: 10.1016/S0927-5452(04)80048-0.

Hinneburg D., Renner E., Wolke R., 2009, Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Env. Sci. Pollut Res. 16:25-35.

Renner E., Wolke R., 2010, Modeling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions. Atmos. Env., 44, 1904-1912.

Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., Memmesheimer, M., Feldmann, H., Renner, E., Wolke, R., Kerschbaumer, A., 2008, A model intercomparison study focussing on episodes with elevated PM10 concentrations. Atmos. Env. 42, 4567-4588.

Heinold et al (2007) Heinold, B., J. Helmert, O. Hellmuth, R. Wolke, A. Ansmann, B. Marticorena, B. Laurent and I. Tegen, 2007, Regional Modeling of Saharan Dust Events using LM-MUSCAT: Model Description and Case Studies, J. Geophys. Res. 112, D11204, doi: 10.1029/2006JD007443.

Heinold, B., Tegen, I., Schepansli, K., Tesche, M., et al., 2011, Regional modeling of Saharan dust and biomass-burning smoke. Tellus B, 63: 781–813.

Solazzo, E., et al., 2012a, Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmos. Env. 53, 75-92.

Solazzo, E., et al., 2012b, Ensemble modelling of surface level ozone in Europe and North America in the context of AQMEI. Atmos. Env. 53, 60-74.

Helmert et al. (2007) Helmert, J., B. Heinold, I. Tegen, O. Hellmuth and M. Wendisch, 2007, On the direct and semidirect effects of Saharan dust over Europe: A modeling study, J. Geophys. Res. 112, D13208, doi: 10.1029/2006JD007444.

Wolke et al. (2012) Wolke, R., W. Schröder, R. Schrödner, E. Renner, 2012, Influence of grid resolution and meteorological forcing on simulated European air quality: A sensitivity study with the modeling system COSMO-MUSCAT, Atmos. Environ., 53, 110-130, doi: 10.1016/j.atmosenv.2012.02.085.